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ABSTRACT

We present the Active Attention-Modified Policy Shaping (Active
AMPS) algorithm, which allows learning robots to request feed-
back from multi-tasking human teachers. Active AMPS uses Re-
inforcement Learning supplemented with feedback from teachers,
while avoiding frequently interrupting the teacher. This algorithm
does so by selectively asking for attention from teachers in low-
information areas of the state space when there is uncertainty about
the teacher’s feedback. Active AMPS allows people to take breaks
from teaching the robot to complete other tasks, and is forgiving
to lapses in human attention if learning occurs over long periods
of time. We test Active AMPS both in simulation and on a physical
robot in a human study. In simulation, we find that Active AMPS
outperforms Attention-Modified Policy Shaping (AMPS), achieving
an 11.0% increase in area under its learning curve while receiving
89.9% less feedback. In the human study, we find statistically signif-
icant results showing that Active AMPS allows people to complete
77.5% more work than AMPS while the robot receives 48.5% less
feedback, without decreasing performance.
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1 INTRODUCTION

Robots that learn from humans over extended periods of time can-
not always expect a human teacher to be paying attention to them.
Teachers may have other tasks to complete, other robots to oversee,
or simply wish to take breaks from supervising the robot. Robots
can also learn from their environment while teachers are gone.
However, this raises the question of when people should supervise
the robot and when to take breaks. If the burden is on the teacher
to decide when to check in with the learning robot, the teacher may
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be distracted from their other task. Furthermore, if they are unable
to check in on the robot they may miss important moments in the
learning process, during which feedback would have been useful.

Consider a person cleaning dishes and teaching a robot to put
away plates and cups. The person begins by giving the robot feed-
back while it puts away four cups in a row. The person then goes
to the sink with their back turned to wash dishes. While doing so,
they miss the robot attempting to put away a plate for the first time.
If the robot had actively decided to ask the teacher for attention
during this attempt, the teacher’s time could have been balanced
better towards giving useful feedback and washing dishes. However,
allowing the robot to interrupt the teacher arbitrarily could become
disruptive and prevent the teacher from accomplishing other tasks.
Therefore, an algorithm that chooses informative times to interrupt
the teacher is desirable.

To address this issue, we propose an algorithm, Active Attention-
Modified Policy Shaping (Active AMPS), that adds an active learning
component to the Attention-Modified Policy Shaping (AMPS) algo-
rithm [14]. AMPS increases the robot’s exploration during periods
of teacher attention and decreases it during periods of inattention.
Using Active AMPS, a robot asks for attention for states in which it
is uncertain of the teacher’s feedback, with spaces of at least length
t in between each request for attention. The pipeline for Active
AMPS is shown in Figure 1. This figure shows the steps the robot
takes following an action. First the robot checks how long of a
break the teacher has had. If it is long enough, the robot checks its
certainty of the feedback the teacher might give in the next action.
If it is uncertain, it will request attention and feedback. This method
removes the responsibility of deciding when to provide feedback
from the teacher, enabling the robot to learn quickly while allowing
the teacher to spend time on other tasks.

We tested Active AMPS both in simulation and in a human study
with a robot, comparing to AMPS and other algorithms. We find
that Active AMPS learns a desired policy more quickly than AMPS
in simulation, with an increase of 11.0% in area under the learning
curve. Furthermore, Active AMPS requires attention in 89.9% fewer
states than AMPS, as attention is only received in states which
require more information. In the human study, we find that Active
AMPS allows people to complete 77.52% more work on a secondary
task than AMPS while the robot receives 48.54% less feedback.
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Figure 1: Active AMPS pipeline for each action taken

2 BACKGROUND

This work builds on previous research in three main fields: Rein-
forcement Learning with human feedback, human multi-tasking,
and active learning. Reinforcement Learning (RL) with human feed-
back has been studied in several forms [8, 15, 18, 25, 26]. These
methods do not actively ask for attention or help from the human
teacher, and the teacher is not assumed to take breaks to complete
other tasks. Lack of feedback from the teacher is not interpreted
any differently when they are absent or watching but abstaining
from giving feedback. Our work extends the current work on RL
with human feedback to long-term learning environments, to allow
breaks as in [14] but also actively ask for attention. We use the
Policy Shaping method in our work to combine feedback with RL.

In order to increase productivity, interrupting people too often
should be avoided. Previous work in human multi-tasking research
shows that frequent interruptions decrease task performance on
complex tasks [21, 27] and that interruptions to complex tasks are
worse for performance than simple tasks [6]. Complementary to
our work, Ramachandran et al. design a method of timing when
children take breaks from learning tasks led by a robot [24]. Prior
research has also focused on determining when to interrupt people
to maximize task performance or minimize disruption [1, 23]. Our
method allows us to do both, while also maximizing the perfor-
mance of a learning robot.

There has been previous research on active RL [13] without
human teachers available, using initial estimates of an MDP to
direct exploration. This exploration is not based on human feedback.
Other research [2, 12] creates active RL that queries teachers for
feedback in informative states, but assumes that teachers are always
present and available to give feedback. There has been previous
research on active learning that waits to ask for feedback until some
information threshold has been passed 7, 9, 10]. However, this work
does not consider human teachers who have other tasks to complete
while teaching the robot. We use reinforcement learning, unlike
[7, 9], and unlike [10] we base our threshold directly on previous
feedback from the human teacher. Inverse reinforcement learning
is another method of shaping a learning task with information from
human teachers [11, 17, 19], as well as active IRL that focuses on
safe learning [5]. However, these methods do not start with a reward
function and assume that teachers are always paying attention.

3 METHODOLOGY

This work builds on Attention-Modified Policy Shaping (AMPS)
[14], which expands reinforcement learning (RL) with Policy Shap-
ing [8, 15] to enable people to take breaks from teaching the robot.
We first describe the Policy Shaping and AMPS algorithms, and
then introduce the Active AMPS algorithm.

3.1 Policy Shaping

Policy Shaping allows human teachers to give binary positive or
negative feedback to a robot performing reinforcement learning
[8, 15]. This feedback directly influences the action policy of the
robot, and is interpreted as a positive or negative decision on a
single state and action rather than a reward.

The reinforcement learning method for Policy Shaping that we
use is Q-learning with Boltzmann exploration [28, 29]. In this work,
we set the learning rate to 0.4 and the discount factor to 1.0. These
parameters were chosen by running Q-learning in simulation and
maximizing the total reward gained over 100 episodes of the task de-
scribed in Section 4.1. Using Boltzmann exploration, the probability
of taking any action a given the learned Q-values is

Q(s.a)
Pry(als) = %M

o€ 7

from [28], where 7 is a constant. We set 7 = 0.3 in this work. A
variable C, ranging from zero to one, is assigned to estimate the
confidence in the correctness of human feedback. We use C = 0.9,
meaning that we trust the teacher to give correct feedback 90% of
the time for our task. The probability that an action is a good action
based purely on human feedback is

As,a
Pre(als) = mrasn

Chs.at(1-C)bs.a
from [8, 15], where A, 4 is the difference between the number of
positive feedback and negative feedback received in (s, a). This
probability is combined with the probability Prg(a) to give the
probability of taking any action a € A in state s, i.e. the "shaped"”
policy

Pry(s,a)Pre(s,a)
Diaea Prg(s,a)Pre(s,a)

Pr(als) =

as used in [8, 15].

3.2 Attention-Modified Policy Shaping

Attention-Modified Policy Shaping (AMPS) changes exploratory
behavior depending on human attention [14], allowing people to
take breaks from teaching the robot while allowing the robot to
continue learning safely without attention from a teacher. AMPS
builds on Policy Shaping with RL by providing a new exploratory
method. For each state, the agent saves the state-action pairs that the
teacher has seen, Ageen, and state-action pairs to which the teacher
has given positive feedback, Ag,0q. For clarity, we define Aunseen
as all state-action pairs not in Ageep. During attention, for all actions
a; in the current state s, AMPS chooses between (s, a;) in Aynseen
or Agooq With equal probability. If the chosen set is empty, then the
algorithm uses regular Policy Shaping. Choosing actions in Aynseen
allows the robot to explore more unseen states, and choosing actions
in Agooq allow the robot to explore "good" areas of the state space.
During inattention, AMPS chooses (s,a;) € Agooq When there
exists an (s, a;) € Agooq, and uses Policy Shaping otherwise. These



are safer actions than exploring using reinforcement exploration
methods, as they have been previously approved by the teacher.
AMPS enables the robot to learn quickly with little human attention
by taking advantage of that attention with increased exploration.
Furthermore, while no person is watching the robot, it will tend
towards actions that the teacher has previously approved.

3.3 Active Attention-Modified Policy Shaping

We formulate the attention-requesting problem in the following
way. The robot requests feedback when it is unsure of any positive
actions to take in a state, and spaces the requests for attention in
order to allow breaks from teaching. This algorithm is shown in
Algorithm 1.

In order to define when the robot is unsure of a positive action to
take, we use Ag, 4 as in the Policy Shaping algorithm: the difference
between positive and negative feedback on state s and action a.
We set a confidence threshold § such that when Ag 4 > § for any
a € A, the robot considers (s, a) a good state-action pair, as (s, a) has
received 6 more positive feedback than negative feedback. When
As g > 6 for any a € A, the robot proceeds to learn without asking
for attention, as it is confident that it knows at least one action
that the teacher has approved in state s. For this work, § = 1, so
that as long as one action has received more positive than negative
feedback in state s, the robot will no longer ask for attention in
state s.

If Asa < 6 V a € A, the robot can ask for attention. In this
case, no action has received more positive than negative feedback
in state s. Therefore, the robot does not know any actions to take
that have been approved by the teacher. After attention has been
requested in such a state, we assume in this work that the robot
receives attention from the teacher. During attention, like AMPS,
the robot attempts to take actions in Ay pseen OF Agood with equal
probability.

We also set a time threshold ¢, which limits how often the robot
can ask for the human teacher’s attention. After each request for
attention, the robot must wait for at least ¢ actions before asking
for attention again. This time threshold allows teachers to take
predetermined breaks from teaching the robot, so they do not have
the robot asking for feedback and interrupting them too often. In
this work, we assign a constant action count to ¢ to space attention
requests evenly over the length of time that the robot learns. In
future work, the variable ¢ could also be non-constant. For example,
t could increase over time in order to concentrate feedback at the
beginning of the learning curve.

4 SIMULATION EXPERIMENT

In simulation, we compare Active AMPS to several baselines: Q-
learning, Policy Shaping, and a simulated variant of AMPS we
denote “AMPS Interval”. AMPS Interval is equivalent to AMPS with
a simulated teacher giving feedback every t rounds. This is more
frequent feedback than a person would likely give over 100 episodes
of learning. We hypothesize that because Active AMPS chooses
informative states for feedback, the robot will learn more quickly
per unit of feedback. C, the policy shaping parameter indicating
trust in the received feedback, is 0.9 in all experiments. C is held
constant across all algorithms, so even if feedback is accurate more

Algorithm 1: Active AMPS

S, A = states,actions;
Aunseen = unseen state-action pairs;
Agood = state-action pairs with positive feedback ¢ = time
threshold;
while learning do
s = current state;
if time since last attention request > t then
if 3a’ € As.t. Ag o > 6 then
request_attention();
p = random var;
if p < 0.5 then
‘ action_choices = all a; € Aynseen;
else
‘ action_choices = all a; € Agyo4;
end
if action_choices = 0 then
‘ action_choices = all a;;
end
a = choose Policy Shaping action from
action_choices;

end
else
action_choices = all a; € Ayyoa;
if action_choices = () then
‘ action_choices = all a;;
end

a = choose Policy Shaping action from action_choices;
end

take_action(a);

f = get_feedback();

update_policy_shaping(f);

end

or less than 90% of the time, the setting of C does not affect algorithm
comparison.

4.1 Task

The robot learned a sorting task with four cups, half one color (k1)
and half another (kz), in which the robot must sort the cups by
color into boxes b1 and by, in which k; goes in by and k goes in
by. The state set S consists of all possible placements of the cups in
and out of boxes. The set A of the robot’s action choices includes:

e "Place": place a cup (color kj or kz) in box by or by

e "Remove": remove a cup (color kq or k2) from box by or by

e "Restart": pronounce cups sorted and restart the task (can be
done at any stage of sorting)

Each episode of the task is only finished when the robot chooses
the action "restart", not when the blocks are physically sorted. There-
fore the robot learns to sort and then restart. Small negative rewards
of -1 are given at each action to encourage reaching the goal state
quickly. A reward of 100 is given when the blocks are sorted cor-
rectly and the robot chooses to "restart". If the robot chooses to



restart but the blocks are not correctly sorted, a reward of -10 is
given to discourage incorrect restarts.

We created an oracle to use instead of human feedback in simu-
lation. This oracle gives feedback as follows:

e Positive: if placing cup of color kq in by or of color k3 in by
e Positive: if removing cup of color ky from b, or of color k;
from by

Positive: if restarting and blocks are correctly sorted
Negative: otherwise

4.2 Evaluation

We compare Active AMPS to AMPS Interval, Q-learning, and Policy
Shaping. We set t = 2 for Active AMPS and AMPS Interval, so
that the robot can at most ask for attention in one out of 3 states.
Policy shaping receives attention once every three actions to fairly
compare to Active AMPS and AMPS Interval. Q-learning does not
receive feedback.

For each algorithm, we compare the area under the learning
curves for all four algorithms. Each learning episode ends when the
robot chooses the "restart" action. The highest reward the robot can
receive in a single episode is 96 when the robot places all four cups
correctly, receiving a reward of -1 each time, then chooses to restart
the task, receiving a reward of 100. The lowest reward the robot
could possibly receive in a single episode is negative infinity, as it
could take any number of bad actions and then choose to restart,
receiving a reward of -10. We hypothesize that Active AMPS will
learn more quickly than AMPS and AMPS Interval, as it chooses
more informative actions for feedback. Each algorithm learns for
100 episodes of the task. These results are averaged over 1000 trials
for 100 task episodes each to smooth out random variations in
learning speed.

4.3 Results

We compared Active AMPS, AMPS Interval, Policy Shaping, and Q-
learning. The resulting graph of rewards received per task episode
is shown in Figure 2. We calculated the area under each curve of
total reward over episodes 0-99 using the composite trapezoidal
rule. We find that Active AMPS received more reward on average
than AMPS Interval, Policy Shaping, and Q-learning. Active AMPS
had an average area of 8880.6 under the learning curve, AMPS In-
terval had an average area of 7999.7, Policy Shaping had an average
area of 6987.1, and Q-learning had an average area of 5738.0. Thus
Active AMPS had an increase in area under the learning curve of
11.0% compared to AMPS Interval, 27.1% compared to Policy Shap-
ing, and 54.8% compared to Q-learning. We found the differences
between these algorithms to be statistically significant (F(3,3996) =
10641.7,p < 0.0001) using a one-way ANOVA. Post-hoc tests using
Welch’s t-test show statistically significant differences between
Active AMPS and AMPS Interval (¢(1917.7) = 65.4,p < 0.0001),
Active AMPS and Policy Shaping (#(1544.5) = 108.2,p < 0.0001),
and Active AMPS and Q-learning (¢#(1480.8) = 169.2,p < 0.0001).
We also compared the amount of feedback each algorithm re-
ceived on average. While each algorithm learned for exactly 100
episodes, the number of total actions per episode varies. Active
AMPS received attention on 18.7 actions on average, AMPS Interval
received attention on 184.7 actions on average, and Policy Shaping
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Figure 2: Simulated algorithm comparison of rewards gath-
ered over each episode. All algorithms were run for 100
episodes.

received attention on 203.1 actions on average. Q-learning received
no feedback. Policy Shaping receiving more attention implies that
even though all algorithms learned for the same number of episodes,
Policy Shaping took more actions overall than AMPS Interval.

Active AMPS had an decrease in feedback of 89.9% compared to
AMPS Interval and 90.8% compared to Policy Shaping. We found the
differences between these algorithms to be statistically significant
(F(2,2997)=117794.3, p<0.0001) using a one-way ANOVA. Post-hoc
tests using Welch’s t-test show statistically significant differences
between Active AMPS and AMPS Interval (#(1982.1) = —595.2,p <
0.0001) and Active AMPS and Policy Shaping (#(1433.8) = —386.8,p <
0.0001).

5 REAL-WORLD EXPERIMENT

We ran a within-subject human study on twelve participants with
a physical robot to test human aspects of Active AMPS. Three
algorithms were tested: Active AMPS, AMPS, and AMPS Interval.
As in the simulation experiments, we ensure that AMPS Interval
receives attention from the participants after every ¢ rounds. The
robot learned for twelve actions in each algorithm, beginning with
the same Q values, Agoods and Ageen each time. Fifteen total state-
action pairs were in Agseepn, with six in Agood- The state-action pairs
in Aggoq are shown in Table 1. We note that each algorithm learns
for twelve actions in the human study, not episodes. All simulation
learning was done over 100 full episodes, for which each episode is
multiple (potentially over twelve) actions.

5.1 Task

The robot completed the same sorting task as it did in simulation.
The cups were kept in a holding area at the back of the table and
placed on one side or another for sorting. These sides were labeled
with the correct color. Pre-recorded actions using kinesthetic teach-
ing were used to pick up and place cups. If the robot failed to pick
up a cup during the study but continued the placing or removing
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State

(1.0]
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(k1. k2], [ ]

(k1] [k2, k2]

[k1, k1], [k2]

[kl’ kl]’ [kz, kz]

Action | place ky in by

place k1 in by

place kq in by

place ky in by

place k; in by

restart

Table 1: Ajyo4 used at start of human study. The first set of state brackets represents box b1, and the second represents box b;.

motion, its gripper still pointed to the goal location of the cup at
the end of the motion. The researchers placed the cup in the goal
location in these scenarios, telling the participants to judge the
action as if the robot had placed the cup there. Each action took
slightly over a minute depending on the position in which the cup
was placed.

The real-world "restart" action was executed by the the researcher
after the robot stopped moving, signaling that it thought the cups
were sorted. This decision was made to allow sufficient rounds
of learning to occur within the one hour long study. The restart
action took a variable amount of time, up to about one minute and
eighteen seconds. After each action that the robot took while a
participant was watching, it said "Done with action" to signify that
it was waiting for feedback.

5.2 Evaluation

This study was run with twelve participants from ages 18-30. Five
participants identified as female, six as male, and one as agender.
The three algorithms (Active AMPS, AMPS Interval, and AMPS)
were counterbalanced over participants, with the list of all six pos-
sible orderings randomized in order over every six participants, so
all six orderings were completed after each six participants. The
robot and study setup are shown in Figure 3.

First, each participant gave informed consent. Then, they were
told to balance their time between a distractor task of copying a list
of words by hand and teaching the robot to sort the cups. They were
given instructions on using the feedback system, giving positive or
negative feedback to the last action the robot took, and told that we
would count the words they were able to copy. We told each partic-
ipant that they would complete three rounds of trying to complete
both tasks, and would be given different instructions before each
round. Each round corresponded to a different algorithm that the
robot was running. After each round, each participant completed a
short survey. We describe these steps in greater detail below.

5.2.1 Pretraining. Each algorithm was pretrained using AMPS
Interval for 47 actions, which asks for feedback every t actions.
We pretrain in order to bring Active AMPS to a point where the
number of feedback asked for per round diverged from AMPS
Interval, as eventually Active AMPS asks for less and less feedback
until it stops as described in Section 3.3. In Figure 4, we see the
number of times the robot asks for attention using Active AMPS
versus AMPS Interval on one run-through of learning for twenty
episodes, which was used for pretraining the algorithms for the
human study. Active AMPS started asking for attention less often
at action 21, when AMPS Interval asked for attention and Active
AMPS waited, as it had received positive feedback for its current
state-action pair. Active AMPS fully stopped asking for attention
from the teacher at action 73. We used the Q-values, Aseen, and

Agood learned after action 47 of AMPS Interval, as this is halfway
through the divergence period of the attention requests. Pretraining
minimizes the burden to participants by reducing the time needed
from them during the study, and focuses the study on the part of
the learning process where the frequency of question-asking in
Active AMPS drops.

Figure 3: Robot performing sorting task used in human
study
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Figure 4: Divergence of attention requests between Active
AMPS and AMPS Interval for one learning run. Requests for
attention diminish over time using Active AMPS.

5.2.2  Distractor Task. The participants divided their time be-
tween a distractor task at one work station and teaching the robot at
another. The distractor task was structured so that we can measure
how much of the task is completed, with participants copying pages



of eight-letter words taken from the NLTK corpus [4] printed in
order, using pages "airproof-anophyte", "outmount-oxidator”, and
"labordom-lionizer". These pages were given in the same order to
each participant, so that "airproof-anophyte" was the sheet of words
to copy for the first algorithm, and so on.

At the start of each "round" (start of new learning algorithm), a
new word sheet and blank copying paper were given. Participants
were told that each round would take approximately 15 minutes
to complete and to balance the two tasks of teaching the robot
and writing down words. Participants were told that their progress
teaching the robot and copying words in one round would not
carry over to any future rounds. The word copying work states
was faced away from the robot, but participants were allowed to
glance over at the robot while copying words. In order to not attract
undue attention from participants while they were completing the
distractor task, the robot did not speak during these times. However,
the sound of cups being placed on the table could be heard from
the word copying work station.

5.2.3 Teaching the Robot. Since the robot was beginning with
the same "sorting knowledge" (Q-values) at the beginning of each
algorithm, we told the participants that the robot would be learning
to sort differently colored cups each round (red-green, green-blue,

red-blue) to visually show the robot starting over at each round.

We instructed the participants that the goal of the robot was have
all four cups sorted and have the robot say "I believe the cups
are sorted. My action is leaving the cups here" Participants gave
feedback by clicking a green and red buttons with "Good" and "Bad"
text respectively on a computer screen. During AMPS, since the
participant could give feedback to the robot for multiple actions
in a row, the robot asked after each action if the participant would
like to stay and watch another action. If so, the participant clicked
a button saying they wanted to stay. Otherwise, they clicked a
button saying they wanted to leave. This button enabled the robot
to continue learning without checking for attention on the next
action, giving the participants time to leave the teaching station.

After allowing participants to practice giving feedback on a few
cup sorting scenarios, we gave the following instructions before
each algorithm, asking the participants to stand in between the
robot and the word copying task area until the round began in
order to avoid biasing them towards starting at the robot or word
copying station.

AMPS: For this round, you can choose when to watch
the robot and give feedback, and when to copy words.
Feel free to spend as long at each task as you feel fit.
You can switch tasks as often as you would like. After
each action that you watch, you can press the button
to say that you would like to stay and watch another
action, or you would like to leave.

AMPS Interval and Active AMPS: For this round,
the robot will tell you when to give feedback by saying
"Please give me feedback," and when to go back to the
word copying task by saying "I will learn on my own
now." Please listen to the robot’s instructions.

5.2.4 Detecting Attention. The robot detected attention from
participants by checking if they were standing in front of the sorting

table. We asked participants to wear a red jacket for the duration
of this study, and the robot detected red objects within a bounded
rectangle in front of the robot’s table using an overhead camera.
The robot only checked for attention before starting each action, so
it did not detect attention if the participant walked up to the robot
in the middle of an action. This most closely follows the AMPS
algorithm, as it assumes that the robot knows whether attention
is present for an action before choosing it. The robot also used
this method to determine when to start actions when asking for
attention; after requesting attention, the robot waits until it detects
a red object to begin the action. When attention was detected, the
robot said "I see you are here to give feedback"

5.2.5 User Survey. After each algorithm ran, participants an-
swered the following survey questions. Each question could be
assigned a number from 1 (low) to 4 (high).

(1) How well did the robot learn the task?
(2) How quickly did the robot learn the task?
(3) How annoying was the robot during the task?

These questions compared the algorithms’ performance from the
participants’ perspectives. As Active AMPS and AMPS Interval
rely on interruptions, we measure how annoying each algorithm is
perceived, hypothesizing that a robot that asks for less attention
is perceived as less annoying. After all three algorithm rounds
were completed, we asked the participant’s age, gender, robotics
experience (1 low, 3 high), and two free-answer questions:

(1) How would you improve the interface to make the interac-
tion with the robot more effective?

(2) How would you change the training process to make it easier
to use or more effective?

The question regarding the interface was collected for future re-
search on this topic, to determine whether the "good" and "bad"
feedback buttons and verbal calls to the participant could be im-
proved. This question is not meant for comparison between algo-
rithms, rather to inform the methods that we use to collect feedback
and alert people that the robot wants feedback.

5.3 Results

Participants self-reported a robotics background average of 1.5 out
of 3, with two participants reporting at 3, so most of our users were
inexperienced with robotics.

5.3.1 Amount of feedback given to robot. We measured the num-
ber of actions that received feedback from participants over each
algorithm. Participants gave feedback on fewer actions during Ac-
tive AMPS (M = 3.0, SD = 0.58) than AMPS (M = 5.83,5D = 2.11)
and AMPS Interval (M = 4.0, SD = 0.00). During Active AMPS, par-
ticipants gave 48.5% less feedback than AMPS, and 25% less feedback
than AMPS Interval. The differences between these algorithms were
statistically significant (F(2,31) = 3.38,p < 0.05) using a repeated
measures ANOVA. Post-hoc tests using a dependent t-test show that
the difference between Active AMPS and AMPS was statistically
significant (#(11) = —4.44,p < 0.001), as were the differences be-
tween Active AMPS and AMPS Interval (¢(11) = —5.74,p < 0.001)
and AMPS and AMPS Interval (£(11) = 2.88,p < 0.05). The amount
of feedback per algorithm is shown in Figure 5.
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Figure 5: Amount of feedback given during each algorithm.

5.3.2  Number of Words Copied. We measured the number of
words written by participants over each algorithm. Words that
were crossed out and rewritten were only counted once. Partici-
pants were able to copy more words during Active AMPS (M =
136.25, SD = 35.4) than AMPS (M = 76.75, SD = 36.5) and AMPS
Interval (M = 120.17,SD = 29.0). During Active AMPS, partici-
pants completed 77.5% more work than AMPS, and 13.4% more work
than AMPS Interval. The differences between these algorithms were
statistically significant (F(2,31) = 3.55,p < 0.05) using a repeated
measures ANOVA. Post-hoc tests using a dependent t-test show
that the difference between Active AMPS and AMPS was statisti-
cally significant (#(11) = 4.57,p < 0.001), as were the differences
between Active AMPS and AMPS Interval (¢£(11) = 2.65,p < 0.05)
and AMPS and AMPS Interval (£(11) = —4.26,p < 0.005). The
amount of words copied per algorithm is shown in Figure 6.
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Figure 6: Amount of words written during each algorithm.

5.3.3  Perceptions of the Robot. We asked participants to report
their annoyance with the robot, how well the robot learned, and how
quickly the robot learned. All scores were on a scale from 1-4 (1 low,
4 high). Participants reported slightly less annoyance with Active
AMPS (M = 1.33,SD = 0.47) than AMPS (M = 1.83,SD = 0.99),
but these differences were not statistically significant (Z = 6.0,p =
0.16) using the Wilcoxon Signed-Rank test. Similarly, they reported
slightly less annoyance with Active AMPS than with AMPS Interval
(M = 1.5,5D = 0.76), but these differences were not statistically
significant (Z = 1.5,p = 0.41). Ten out of twelve participants
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Figure 7: Participant perceptions of the robot

rated Active AMPS as equally or less annoying than AMPS, and
eleven out of twelve participants rated Active AMPS as equally or
less annoying than AMPS Interval. The annoyance scores for each
algorithm are shown in Figure 7a.

Participants reported that Active AMPS (M = 2.83,SD = 1.21)
learned better than AMPS Interval (M = 2.67,SD = 1.11), but these
differences were not statistically significant using the Wilcoxon
Signed-Rank test (Z = 16.0,p = 0.78). Active AMPS was scored
as not learning as well as AMPS (M = 2.92,SD = 0.95), but these
differences were also not statistically significant (Z = 12.0,p =
0.73). The reported scores for each algorithm are shown in Figure
7b.

Participants reported that alg (M = 2.0, SD = 1.0) did not learn
as quickly as AMPS (M = 2.42,SD = 1.11), but was not statistically
significant using the Wilcoxon Signed-Rank test (Z = 5.0,p = 0.24).
Active AMPS was also reported to not learn as quickly as AMPS
Interval (M = 2.25,SD = 0.83), but these differences were also not
statistically significant (Z = 13.5,p = 0.52). The reported scores for
each algorithm are shown in Figure 7c.

5.3.4 Open-ended Questions. The answers to "How would you
improve the interface to make the interaction with the robot more ef-
fective?" and "How would you change the training process to make
it easier to use or more effective?" had several common themes. Par-
ticipants suggested some technical improvements such as speeding
up the robot or allowing feedback on partially observed actions.
Five participants suggested more nuanced feedback techniques. For
example, the ability to "rate...from 1 to 3 instead of good and bad" or
to "help the robot know where to go, or prevent it from making an



incorrect action.” Three participants suggested ways to make it eas-
ier to multitask from the word copying station, including the ability
to give feedback remotely so that they did not have to switch task
stations. One participant suggested that the robot "make a sound
when the action is completed” to help keep tabs on the robot’s
learning.

5.3.5 Learning after Human Study. After the study, we give the
final Q-values learned from each participant and algorithm to our
simulation, continuing learning in each algorithm without any
feedback. The simulation averaged over 1000 trials of learning for 10
episodes from each participant’s final Q-values for each algorithm.
We find no statistically significant difference in the areas under
these learning curves using Welch’s t-test, between Active AMPS
(M = 761.8,SD = 118.8), AMPS Interval (M = 761.0, SD = 119.5),
and AMPS (M = 761.4,SD = 119.1). The learning curves after the
human study are shown in Figure 8.
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Figure 8: Simulated learning from human study data for
each algorithm. The three algorithms learned at approxi-

mately the same rate.

6 DISCUSSION

We hypothesized that Active AMPS would allow robots to learn
as quickly as AMPS with less burden on human teachers, and that
people would prefer being interrupted less often. Our results in
simulation suggest that Active AMPS does learn more quickly than
AMPS. Furthermore, Active AMPS uses significantly less feedback
than AMPS and Policy Shaping, showing that less feedback still
results in fast learning when using Active AMPS.

Although we did not find significant results for how annoying
participants found the robot during the different algorithms, the
participants wrote fewer words and gave more feedback to the robot
during AMPS and AMPS Interval. This shows that people spent
more time with the robot than necessary when they chose how to
divide their time or when the robot asked for attention at regular
intervals. Thus even if people do not find the other algorithms
annoying, Active AMPS is able to better manage the participants’
time. Although no algorithm learned significantly faster than the

others in the human study, we attribute this to the short amount of
time people interacted with the robot (twelve actions per algorithm).

Furthermore, we note that the reported annoyance scores skewed
towards low numbers. There are a variety of possible reasons for
this result, including the short time period of the study, low experi-
ence with robots, and that none of the algorithms were extremely
annoying. Thus differences in annoyance levels may be difficult to
detect in a short-term study, but might be detected when people
teach robots over long periods of time. We did not find significant
results for how well and quickly the robot learned the task, suggest-
ing that asking for feedback more or less often does not affect how
intelligent the robot seems. How well or quickly the robot seems to
learn could hinge on the random choice between taking a "good"
or an "unseen" action while a teacher is watching.

The answers to the open-ended questions suggest that people
may prefer more nuanced feedback than simple positive/negative
options. While this is not currently an option for Policy Shaping,
other feedback techniques could be used in future work. The re-
quests to make multi-tasking easier add to the evidence supporting
the benefits of the robot choosing when the teacher should pay
attention. In addition to the increase in words copied and decrease
in attention to the robot shown in Active AMPS, the open-ended
feedback suggests that people find multi-tasking while teaching a
robot difficult.

Future work includes testing this algorithm on multiple robots,
with communication to determine which robot the teacher should
be watching at any moment. This extension would allow one teacher
to give feedback to multiple robots at once without planning their
distribution of time to give to each robot themselves. We would
like to consider more complex tasks in the future. To do so, we
could combine Active AMPS with RL methods that enable faster
learning on difficult tasks, e.g. [3, 16, 20, 22]. The main contribution
of Active AMPS, asking for attention sparingly in low-information
areas, could still be applicable to scalable learning methods.

7 CONCLUSION

In this work, we introduce Active AMPS, an algorithm that reduces
the amount of total feedback a human teacher gives to a learning
robot and allows the teacher to take breaks to complete other tasks.
In simulation and a user study with a robot, we show that Active
AMPS receives significantly more RL rewards and significantly less
feedback than previous algorithms using Policy Shaping and RL.
Applying Active AMPS to long-term learning will enable human
teachers to be more productive, as they can complete other tasks
while waiting on a request from the robot. Furthermore, it will
allow robots to learn tasks more quickly by receiving feedback on
important states, with less burden on teachers to determine which
states are important.
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