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Abstract— We address the challenge of how a robot can
adapt its actions to successfully manipulate objects it has not
previously encountered. We introduce Real-time Multisensory
Affordance-based Control (RMAC), which enables a robot to
adapt existing affordance models using multisensory inputs. We
show that using the combination of haptic, audio, and visual
information with RMAC allows the robot to learn afforance
models and adaptively manipulate two very different objects
(drawer, lamp), in multiple novel configurations. Offline evalu-
ations and real-time online evaluations show that RMAC allows
the robot to accurately open different drawer configurations
and turn-on novel lamps with an average accuracy of 75%.

I. INTRODUCTION

A robot operating in unstructured, uncertain human en-
vironments cannot rely only on pre-programmed actions,
but will need to learn and adapt. Affordances are one
representation designed to enable robots to reason about how
its actions impact its environment [1], modeling skills as the
relationship between actions and effects [2]-[4]. Here, we
introduce Real-time Multisensory Affordance-based Control
(RMAC), which allows robots to adapt affordance models
using multisensory inputs. RMAC makes two main contri-
butions: we learn multimodal sensory models of affordances,
and we take a Learning from Demonstration (LfD) approach
to connecting a robot’s actions with its sensory experiences.

A multisensory approach is crucial for a robot to adapt an
action to achieve a specific effect because interactions with
the environment are multisensory. While a robot could rely
on vision to turn on the lamp (Fig. [T)), it should also utilize
other modalities (e.g. touch or audio) to model the effects that
may be critical to achieving an affordance. However, there
exist few prior works using multisensory information due to
the challenges associated with data of varying time scales and
signal types (i.e. continuous vs. discrete signals). We show
that a robot using RMAC can utilize multisensory input to
focus on the key sensor modalities for different affordances
and improve the robot’s ability to interact with objects.

Using LfD enables the robot to take a previously learned
affordance model and transfer it to another object (e.g. adapt
its existing model for scoop-able to scoop with a bowl
rather than the spoon used to teach the affordance) without
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Fig. 1: Robot platform turning on a lamp.

requiring an expert to provide an objective function by hand
or specify the feature space of the feedback controller.

We show that RMAC allows robots to adaptively manipu-
late two very different objects (drawer, lamp) without requir-
ing an expert to explicitly specify what sensory modalities
to focus on. Through both online and offline evaluations, we
show that the combination of haptic, audio, and visual input
with RMAC allows the robot to open a drawer at 5 different
configurations and turn on two never-before-seen lamps with
an average accuracy of 75%.

II. RELATED WORK

Multisensory control has been studied for decades. Sem-
inal work [5]-[7] in hybrid control showed manipulation
skills split into segments utilize different sensory spaces as
feedback (e.g. position vs. force). Early methods were limited
to structured environments due to requiring an expert to
hand-tune trajectories. To execute trajectories in unstructured
environments, one can leverage LfD [8]. Here we focus on
methods most directly related to RMAC.

Multisensory control: Dynamic Movement Primitives
(DMPs) are a common method for control [9]. DMPs have
been extended to include Force/Torque (F/T) data [10],
compliance control [11], online error recovery with F/T sens-
ing [12], and Associated Skill Memories that store sensory
inputs [13]. Other approaches include using Hidden Markov
Models (HMMs) [14], and learning a kinematic model of
an articulated object (doors) using only F/T sensing [15].
Several works demonstrate the value of multimodal data over
a single modality [16]—[19]. While prior works merged haptic
and visual data in skill learning, they adapt a specific learned
trajectory to a specific object. Our work has the ability to
generalize to different objects with similar affordances.

Segmentation-based control: Typical approaches focus
on how to segment trajectories [20]-[22], build represen-
tations of skills using segments [23, 24], and understand
skill transitions based on the effects of a segment [19, 25,



26]. Most use modified DMPs to model a segment and
classifiers to predict transitions [19, 25, 27, 28]. [25] and
[19] use a multisensory approach to detect when and what
skills to switch to and are most similar to our work. [25]
segments demonstrations with an HMM based algorithm
(STARHMM), which detects transitions based on effects of
actions using visual and haptic data. [19] expand ASMs to
include multisensory information about effects of actions
including visual, haptic, and auditory data. While these
works generalize to different object configurations, they have
not been shown to adapt to new objects. Our work focuses
on sensory modality saliency in adapting affordance skills.
Control for affordance transfer typically relies on simple
PID controllers (e.g. pushing across a table [29]-[31], stack-
ing [32]) or rely on hand-provided actions [33, 34]. Most
related from Wang et al. [35], which reduces exploration to
adapt affordance models. In contrast, we transfer affordances
without exploration and use a variety of sensory modalities.
Like hybrid control, affordances is a long studied field and
these surveys contain a broader view of the field [2]-[4].

III. APPROACH: REAL-TIME MULTISENSORY
AFFORDANCE-BASED CONTROL (RMAC)

We define affordance as an agent performing an action
on the environment to produce an effect. A robot (agent)
performs a set of actions A = {ay,..,an} on a set of objects
O = {o1,...,0n}, in order to model the effects that a; can
have on oj, where i = {1,..., N}, j = {1, ..., M}, and N and
M are the number of actions and objects respectively. The
robot collects the effect of each object-action (o;, a;) pair,
making this a supervised affordance learning problem. We
introduce RMAC, which builds an affordance-based hybrid
controller from human demonstration. This section covers
each aspect in detail (see overview in Fig. [2).

Data Collection: We obtain demonstrations with
keyframe-based kinesthetic teaching [36], where a person
physically guides the robot in performing the skill and
specifies specific keyframes (i.e. points) along the trajectory
the robot should record. The trajectory is executed
afterwards by performing a fifth-order spline between
the provided keyframes (KFs). We then use human-
guided exploration [37], where the robot executes the
demonstrated trajectory exactly, while a person modifies
the environment to show varied interactions. This requires
a person to be present, but could be extended to use
self-exploration techniques [38]. Note: RMAC does not
depend on keyframe-based demonstrations; only the pose
(position 7 and orientation ¢) of the end-effector (EEF) and
multisensory traces of the skill execution.

Segmentation: While recent work in LfD for trajectory
learning has had success with automatic segmentation [21,
25, 39], they require careful hand-tuning. We take a different
approach and use the KFs from demonstration to segment the
trajectories. People are goal-oriented [40, 41] and KFs likely
provide meaningful subgoals. For example, to turn on the
lamp, the KFs provided are the start, approach, grasp point,

pulling point, release point, retract point, and end. Fig. [6]
shows the sensory space correlates well to the KF changes.

We refer to each segment as a subskill segment, and
generate two sets: D4 represents the Actual location the
trajectory should be split based on the given KF and Dpg
represents Extended segments that are slightly longer (0.5
secondﬂ) than D, (shown in Fig. . DgEg captures the
sensory input of what the robot should expect when it
has successfully completed the current subskill segment and
moves to the next. In this work, we use KFs to segment,
however RMAC can work with any segmentation algorithm.

Affordance Switching Matrix: After identifying each
subskill segment, we generate a “switching matrix” for each
skill that represents the high-level action (i.e. control mode)
to move the robot, similar to matrices in traditional hybrid
control methods [6]. The matrix indicates the constrained
modalities and open degrees of freedom for each segment.
We have two control modes (pose and sensory) where the
robot’s action depends only on (1) the EEF pose (', ¢) and
(2) the direct feedback of the real-time sensory inputs.

For each affordance skill, we represent the control modes
as a single MxN switching matrix (S) where M is the
number of modes in the controller and N the number of seg-
ments. Traditionally, M represents the different constraints in
Cartesian and sensory space. In this work, we simplify these
constraints and assume in pose mode all Cartesian directions
(i.e. the exact vector (z,y,7)) matter, and in sensory mode all
sensory input is important to each subskill segment. While
RMAC could still be used without this simplification, we use
the sensory model to automatically capture the importance
of each direction/modality.

pose(2)
sensory(2)

pose(1)

pose(n)
sensory(1l) M

sensory(n)

An example of S can be found in Equation Each
column of S represents a subskill segment and each row
represents the control mode (i.e. S;; where ¢ = {1,..., M}
and j = {1,..., N}). For each S;;, we assign a binary value
(0/1) to represent if that channel is constrained during that
segment. For example, if S; ; of the matrix in Equation E]
were [1,1,0], the controller would use pose control for the
first two segments and sensory for the third. In this work,
an expert provides the control mode to use for each subskill
segment. In the future, a switching matrix could be learned
by computing the variance through each subskill segment.

Similar to prior work [19], we assume the execution
sequence of subskill segments is pre-defined and the system
will either naturally progress through each subskill segment,
or stop if something has occurred that cannot be adapted.

Subskill Segment Modeling: Once we have each subskill
segment, we create an action model and a sensory model of
each subskill. Prior work often represents the action model of
a subskill segment using DMPs [19, 20, 25], and then learn a
high-level policy that dictates what DMPs to execute based
on sensory models. These sensory models typically either

Ithe average amount of time sensory effects occur based on prior literature
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Fig. 2: Real-time Multisensory Affordance-based Control (RMAC): collect mul-
tisensory data using human-guided exploration. Affordance model: a switching

Fig. 3: Example D4 and Dpg given a
trajectory and keyframes (KFs). X is
a single data stream over time.

matrix, an action model, and a sensory model. Execution performed in real-time.

utilized time and use HMMs [25] or discretized the effect
space and use Support Vector Machines (SVMs) [19, 26].
While DMPs can adapt to slight perturbations, the end goal
(i.e. EEF 7 and ¢) must be clearly defined. To address this,
[19] built a library of DMPs and selected the correct DMP
to execute at each instance by tracking the DMP’s trajectory
and comparing it to the expected sensory traces.

We take a different approach and represent the action
model of each subskill segment as a velocity vector v,,. vy, is
generated from D4 and v,, = % Zthl q¢ — q3—1, where T
is the total number of time steps in the trajectory ¢™ and g}’
is the pose of the trajectory for subskill segment n at time
t. This breaks down each subskill segment into incremental
time steps of a subskill (e.g. pulling on a handle can be
viewed as a sequence of small motions away from the handle
until a large force is felt). Representing the trajectory as a
velocity, increases the adaptability of the motion. We rely
on the effect space to determine if the robot has succeeded.
However, this representation adds a challenge that DMPs
avoid: while DMPs give a clear ending position to the robot,
RMAC needs to determine when to stop the motion.

To model the sensory space (e.g. forces, sounds, visual
change in the scene), similar to [18], we use left-to-right
HMMs. We train the HMMs using the D segments. The
parameters of an n-state HMM, (A, B,7), are estimated using
Expectation Maximization (EM) where A is the transition
probability distribution (nxn), B the emission probability
distributions (nx1), and 7 the initial state probability vector
(nx1). The observation space, O, is modeled with a continu-
ous multivariate Gaussian distribution. The exact state space
can be found later in Section [V We use HMMs’ hidden-
states to track where within the subskill segment the robot
is currently executing as well as model the likelihood of
experiencing the different sensory inputs in each state. This
allows us to integrate time into the model whereas SVM-
based approaches do not [19, 26]. To determine when a
subskill segment is finished, we track the current hidden-
state of the left-to-right HMM. If the robot reaches the final
state of the HMM, we conclude it has completed this subskill
segment. While not in the scope of this work, these HMMs
also allow us to determine when the robot has failed by
tracking the likelihoods of an anomaly similar to [18]. Once
the robot detects that it has completed this subskill segment,

it moves directly to the next segment. Although we specify
the exact sequence of segments, this could easily be replaced
with a high-level policy similar to [25] and [42].
Execution for Adaptively Interacting with Objects:
Once we have built a switching matrix, action models, and
sensory models, the robot executes the following steps: (1) If
in pose mode, the user gives the segment a specific pose that
the EEF must reach. (2) If in pose mode, the robot generates
a trajectory computed using the relative pose of the object
and the EEF. After pose execution, the segment’s HMM
determines if we are ready to go to the next segment. (3)
If in sensory mode, the robot executes the velocity, v,, and
collects sensory feedback at each time step. After each step,
the robot stays in the current sensory mode segment until we
reach the final state of the HMM. When in pose mode, we
plan a trajectory through the demonstrated keyframes using
Rapidly-exploring Random Trees (RRTs) [43] after the EEF
pose is converted into joint space using TRAC-IK [44]. The
robot then executes the trajectory on the object (Fig. [3).

IV. ROBOT AND EXPERIMENTAL SETUP

We evaluate RMAC in three experiments, using the robot
platform (Fig. [T), with one Kinova Jaco2 7 DOF arm and a
Robotiq pinch gripper. The arm can be physically moved in a
gravity-compensated mode. The robot has a Microsoft Kinect
v2 RGB-D sensor mounted to a pan/tilt unit. We record:
gravity compensated wrench at the wrist from the Jaco2
internal forward computed kinematics, visual and audio data
from the Kinect2, and the gripper width from the gripper.

To evaluate adaptation of previously learned affordance
models, we choose two skills that vary in difficulty. The
first examines adaptation to changes to a previously learned
object (Case 1). This situation tests RMAC’s ability to adapt
the robot’s trajectory without explicitly tracking the state
(i.e. how far open the drawer is). For Case 1 (Fig. M),
the robot opens the drawer in five configurations, varying
in 2 inch intervals (i.e. lin, 3in, 5in, 7in), systematically
showing how RMAC performs under environment changes.
The second situation (Case 2) evaluates RMAC’s ability to
learn the effects of an action and transfer this to a different
object with a similar effect. We also look at the impact
of sensory modalities for affordance transfer and show that
RMAC performs better with multisensory input. For Case 2
(Fig. @), we use 3 different lamps with varying pull chains.
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Fig. 4: Selected experiment configurations. Drawer states: (a-
d) Closed, 3in, 7in, fully open. Lamp states: (e-j) Original
Lamp off/on, New Lamp 1 off/on, New Lamp 2 off/on

(c) Pulling drawer

(d) Finished pulling
Fig. 5: Robot executing trajectory on the drawer

We chose these objects to show transfer of an existing
affordance model to a novel object without requiring the
robot to re-explore the object [35]. Specifically, we want to
show that the robot can transfer the knowledge of the effects
that it is seeking (e.g. light change, forces felt, etc.) to a
different object that also has these effects.

V. OFFLINE VALIDATION: ADAPTING LEARNED
AFFORDANCE MODELS TO CHANGED AND NEW OBJECTS

We conduct a series of offline experiments to evaluate
RMAC’s ability to (1) adapt an affordance model to chang-
ing environments without explicitly requiring hand-tuning a
closed-looped feedback controller on the state of the object,
(2) select what modalities to focus on during adaptation
without requiring an expert to provide this information
beforehand, and (3) examine the most informative modalities
for each skill and relating this to user provided information.

A. Data Collection and Multisensory Features

We collected 50 interactions of both opening a fully-closed
drawer (Fig. #a) and of turning on a single lamp (Fig.
using the method described in Section [ITl We collect data
from the sources shown in Table [ From each data source
we compute several features that are used to train the

TABLE I: Sensor Data

Sensor [ Modality | Resolution | Features |

JACO2 Haptic 100 Hz Raw Forces (Fi,Fy,FY)
JACO2 Haptic 100 Hz Raw Torques (1%,7Ty,T%)
Robotiq Haptic 100 Hz Raw Gripper Width (G)
Kinect2 Audio 44.1 kHz Audio Power/Energy (Ae)
Kinect2 Visual 7 Hz PC Color (VraBA)
Kinect2 Visual 7 Hz PC Volume (V1)
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Fig. 6: Features from one interaction with the lamp. The
different sensory channels are displayed with vertical lines
that indicate the location of the segments of the set D4

sensory model. For haptic data, the robot collects the gravity
compensated F/Ts at the EEF and the gripper width and the
resulting features are the raw forces (F,F),,F), raw torques
(1T,,T,,T.) and raw gripper width (G,,). The raw audio
data is recorded at 44.1 kHz. We compute root-mean-square
(RMS) of the energy of the Short-time Fourier Transform
(STFT) of the audio signal. The specific parameters used to
generated the feature (A.) are frame length: 2048 and hop
window: 512. We use the python audio library librosa [45] to
compute the audio feature. We compute two visual features
from the point clouds: the average color (RGBA) (Vrcpa)
and the volume of the object (V,,,;). We use [46] to segment
the object from the table. To align the different data sources,
we up- or down-sample the data to 100 Hz. Fig. |6 shows the
computed features from each of the sensory channels and the
vertical lines for the location of the KF-segmented version
of the trajectory of the lamp. The frames can be viewed
semantically as: (1) untuck the arm (2) approach the chain
(3) close the gripper (4) pull down on the chain (5) open the
gripper (6) back away from the lamp (7) retuck arm. The
segmentation for the drawer is omitted due to space. These
features are typically used with multisensory data, but future
work will look into automatically generating them [18].

B. Training Sensory Models

To test the importance of each sensory modality, we
build 7 different sensory models for every combination of
the three sensory inputs (i.e. visual, haptic, audio). For



each sensory model, we change the observation space. The
different combinations and feature spaces for O are split
by modality (i.e. haptic, visual, audio, haptic+visual, hap-
tic+audio, audio+visual, haptic+visual+audio). To train each
HMM, we used the successful interactions from the collected
runs (lamp: 29, drawer: 32). We select the best number of
states (2-15 states inclusive) for the HMMs by performing 5-
fold cross validation (CV). When scoring the HMMs during
CV, we do not use the log-likelihood (unlike during EM when
training a single HMM). Instead, we use the distance away
from the true segment switching point. The smaller the value
(i.e. closer to stopping at the correct location), the better the
score. We normalize each observation space by subtracting
the mean and scaling the features to have unit variance.

C. Test Set

We do not collect test data using the demonstration as we
do in Section [Tl We use the real-time execution controller
described in Section[[TI} This results in data that (a) simulates
what the robot will experience when performing execution
online and (b) allows us to collect the data past the actual
stopping point. We modify the real-time execution during
a sensory feedback subskill segment to ignore any sensory
feedback and keep executing its velocity vector, v,, to a
specific stopping point significantly past when the robot
should have detected the subskill segment has succeeded.

For each object and configuration, we collect 5 test inter-
actions. This results in 35 drawer tests (5 * 7 configurations)
and 15 lamp test (5 * 3 lamps). With these, we can compare
the importance of each modality for adaptation. The goal is to
determine if RMAC can automatically select what modalities
are most salient when given all sensory inputs without re-
quiring an expert to provide this information beforehand. By
comparing all combinations, we can examine what modalities
tend to contribute the best feedback to the task.

D. Results

Case 1 - Drawer: Fig. [7] shows RMAC’s predicted stop-
ping point with different sensory inputs. The figure shows
one test run for the closed drawer configuration. Each subplot
of the figure contains the data source (e.g. haptic, haptic
and visual, etc.) as well as two vertical bars of differing
colors (red and blue). The blue vertical bar indicates where
the robot should have stopped (i.e. the drawer fully opened:
hand-labeled by one of the authors). The red vertical bar
indicates where the robot would have stopped using RMAC.
The closer the red bar is to the blue bar, the more accurate
the controller is at stopping when the drawer is fully open.

For this particular test run, audio information does not
help the robot decide if it has opened the drawer. While
visual information is helpful, it is not as informative as
haptic information. Furthermore, the combination of visual
and haptic feedback provides the greatest contribution to the
stopping accuracy. This intuitively makes sense for opening
drawers: the forces and visual feedback change when pulling
open a drawer.Finally, we can see that the combination of
haptic, visual, and audio data performs on par with haptic and
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for different drawer configurations across the 7 combinations
of the three modalities.

visual. This shows that the algorithm can automatically de-
termine what modalities matter, without any external sources
indicating importance.

More holistically, Fig. [8] shows that the average differences
in time between the ground truth stopping point and esti-
mated stopping point for all five configurations, with smaller
distance values being more favorable. It is interesting to
note that while the 7 inch drawer configuration is the most
difficult to detect because there is only a short amount of
time the robot is pulling before it stops, the model built
from all modalities does equally as well as under the fully
closed and 7 inches open conditions. In addition, the haptic-
audio-visual model provides a significant improvement over
the haptic-visual model for the 5 inches and 7 inches open
conditions. Note, this adaptation occurs without the robot
ever being trained on any configuration other than fully
closed. Overall, results show that (1) the robot can adapt
to different configurations without an expert modeling the
exact state of the object and (2) RMAC can select the salient
modalities for adaptation without being specified in advance.



TABLE II: Accuracy (%) of Turning on Lamps
[ Lamp [H ][ A [V [HA[HV ][AV ] HAV |

Original | 80 | 20 | 20 80 60 20 60
New 1 0 | 20| 20 0 60 0 20
New 2 80 | 20 | 20 0 60 0 100

Case 2 - Lamps: Now we evaluate a situation where the
object changed. While the drawer interactions all used the
same drawer, the lamp interactions require transferring the
affordance model to several new lamps. These lamps look
similar, but they differ in shape and size of shade and length
of pull chain. Further, the sensory readings for this affordance
are more difficult to detect than drawer opening because
the sensory data can either be discrete or continuous. With
the drawers, all of the modalities are continuous, which are
easier to model; discrete signals are short so the models have
only a short time window to capture any change and look
similar to noise. The lamp has two discrete changes to model
(i.e. audio and haptic) when the lamp switch clicks. The only
continuous signal is the visual change in light. Furthermore,
the lamp will not turn on if the algorithm stops before the
desired location and stopping late risks tipping the lamp.

Table |lI| shows the robot’s overall accuracy in turning on
the lamps across all modalities. A trial is classified as a
success if RMAC places the stopping point at or after the
ground truth (provided by the authors). If RMAC places
the stopping point before ground truth or does not predict
a stopping point, the trial is considered a failure. Note,
this might be an overestimate of success because all late
predictions are considered successful despite the possibility
of tipping the lamp. This was required because the exact
moment the lamp could tip was not recorded in the data.
This metric is used in place of stopping distance due to the
discrete nature of success. Overall, the models perform well
but not perfectly at predicting when to stop pulling. Similar
to the drawer, the full sensory model (visual, haptic, audio)
performs on par with the models that use a smaller subset
of modalities (e.g. only haptic and visual). Overall, both
experiments show that the importance of using multisensory
information and the ability of RMAC to select the salient
sensory modalities for a skill without any expert guidance.

VI. ONLINE VALIDATION: ADAPTING LEARNED
AFFORDANCE MODELS IN REAL-TIME

In a final experiment, we validate offline results with an
online robot implementation of RMAC. We use the controller
(Section used to collect the offline test (Section [V-C).
For this evaluation, we connect the data streams to a real-
time feature extractor and connect it to the sensory models
trained as described in Section[V-B] Specifically, we load the
trained HMMs using all modalities (haptic+visual+audio),
and during the sensory subskill segment playback, determine
whether the robot has completed the particular subskill
segment or if it should continue executing at velocity v,,.

For the drawer, we execute 5 trials (i.e. closed, lin, 3in,
5in, 7in) where the robot executes the real-time controller to
determine when to stop pulling on the drawer. We measure

TABLE III: Online Drawer Using Full Multisensory Model

[ Config. | Avg. Movement | Open Size | Non-Adapt Movement |
0 inch 0.05 in 8.3 in 2 in
1 inch 0.08 in 8.36 in 3in
3 inch 0.04 in 8.48 in 5in
5 inch 0.16 in 9.0 in 7 in
7 inch 0.25 in 8.8 in 9 in

two things: (1) how far the drawer opened (fully open: 9
inches) and (2) how far the robot dragged the drawer. (1) tells
us if the robot stopped too early (i.e. if the drawer opened
less than 9 inches) and (2) tells us if the robot stopped too
late (i.e. robot dragged the drawer set across the table). The
mean values across the 5 trials can be seen in Table As
the configuration gets more difficult (i.e. the controller has
less time to stop), the distance the robot pulls the drawer
increases. However, compared to no adaptation, the distance
pulled would be much greater (e.g. 0.25in vs. 9in).

The robot executed the controller 10 times for each online
lamp evaluation. Accuracy on the Original Lamp, New Lamp
1, and New Lamp 2 were 70%, 60%, and 90% respectively.
For the Original Lamp and New Lamp 2, online results were
similar to offline. Interestingly, New Lamp 1 performs better
than the offline results suggested, likely due to the slight
time delay between the real-time signals and the controller.
In the offline evaluation, we measured the exact moment
the algorithm chooses to stop. However, in the real-time
controller, there can exist a slight delay.

The online evaluations show that the controllers using
the full multisensory model can be executed in real-time
with results similar to those found offline. Furthermore, this
evaluation provides a sense of scale to the offline evaluations.
While some test configurations did not perform perfectly
(e.g. the absolute difference in expected time and ground
truth were greater than 0), this does not translate into large
errors in real-time. In particular, we can see that the robot
opens the drawer fully in all cases (i.e. between 8.3 and 9
inches) with only a few instances where the robot pulled
slightly too long. In these situations, the drawer moves
no greater than 0.25 inches. For the lamp evaluation, the
difference in expected and ground truth stopping points does
not significantly impact the overall success rate.

VII. CONCLUSION AND DISCUSSION

We introduced RMAC, a novel approach to learning and
executing affordances. We show that affordances can be
adapted in situations where the object or its state has changed
and it occurs without an expert specifying an objective
function or identifying sensory feature space to focus on.
We show in both offline and online experiments that using
multisensory input improves the quality of skill adaptation.
The evaluations show that the combination of using haptic,
audio, and visual information with RMAC allows the robot
to open a drawer at 5 different configurations and turn on two
never-before-seen lamps. Real-time online evaluations verify
offline results showing RMAC allows a robot to accurately
open different drawer configurations and turn on novel lamps.
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