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ABSTRACT

Communication among team members is important for efficient
teamwork, to coordinate behavior and ensure that all team members
have the information they need to complete the task. To enable
effective communication and thus efficient teamwork, we propose
a multi-agent planning approach to revealing information based
on its benefit to joint team performance. By explicitly modeling
the partner’s knowledge and behavior, our approach allows a robot
in a team to reason about when information is useful, how the
communication is effective, and to communicate through efficient
actions. That is, the robot provides only the necessary information
for task completion, provides the information at the time that it is
needed, and through the action(s) that optimizes team performance.
We validated this approach in a human study in which participants
walk together with a robot to a destination that is known only to
the robot. We compared to a legible motion generation approach,
and showed that users perceived our approach as more natural,
socially appropriate, and fluent to team with, while being both more
predictable and intent-clear. The ratings of our approach are equal
or higher than legible motion across all 18 survey items.
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1 INTRODUCTION

We address the problem of robot communication in human-robot
teams. To efficiently collaborate, individuals share information
when parts of the task specification (subgoals, constraints, etc.)
are not known to all members of the team. However, this com-
munication can be time- and energy-consuming, communicating
unnecessary information can be inappropriate or distracting, and
robots need to be able to communicate efficiently without sacrific-
ing task performance.
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They asked us to
distribute the snacks
into small bags.

* You are bad with
tools. Let me do
the unpacking..

Ok! I carried
scissors in the base.
They also prepared
utility knifes.

this. Where is
this room again?

Figure 1: Simulated dialog in human-robot teaming to reach a des-
ignated location and provide service: the robot initiates communi-
cations to eliminate potential human uncertainty about task spec-
ification (here, snack distributing). Later, the robot responds with
detailed specification (tool locations) given her subtask assignment.

We build on prior work that used information-revealing actions
as part of task execution, and explicitly model partner uncertainty
in order to reveal only relevant information during teamwork (an
example is shown in Fig. 1). We use planning with nested inference
in a multi-agent setting, interleaving action selection with partner
inference; the optimization takes into account the impact of the
action’s embedded information to teamwork, which inherently
balances the cost of information providing against the benefits
to team performance. The planning process determines when to
perform which actions that provide the most information with the
least cost to robot performance. We refer to these behaviors as
"corroborative acts": actions that embed intent-revealing in task
execution and seamlessly deliver only the information needed to
improve partner performance.

We compare this approach to prior work on information-revealing:
specifically, work on generating intent-expressive, or legible, mo-
tions [7]. Legible motion has been shown to be effective in improv-
ing team performance, but has been evaluated under two assump-
tions: first, that it is always necessary to reveal information (about
the goal), and second, that sooner is better when it comes to the tim-
ing to reveal information. However, depending on the task setting,
these assumptions may not always hold: the information may not
necessarily help partner performance (or may recklessly reduce
robot performance), and demonstrating intent early may not be
as effective compared to that at the critical timing. Information-
providing gestures at the wrong time could appear inappropriate
to the current task, or even confusing to the partner.
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We conduct the evaluation under a guidance task, in which a
robot and human walk together towards a goal known only to
the robot. The two approaches are evaluated under the within-
subjects design, with self-reported perceptions of teamming quality,
including teamwork fluency [10], perceptions of the robot as a
social agent and teammate, and intent clarity [6]. We show that
our approach generates more efficient trajectory, and significantly
outperforms legible motion on subjective measures, including being
more fluent to team with, natural, socially appropriate, and both
more predictable and intent-clear; our approach also performs equal
or better across all 18 self-report questionnaire items. Furthermore,
we note that our planning approach can be naturally extended
to include other forms of communicative actions, and to include
explicit as well as implicit communication.

2 RELATED WORK

Communication is an active research area to enable smooth hu-
man interaction with agents, including robots and machines. In
dialog, the complex sentence structure and rich domain knowledge
require the agent to reason about effective responses for command
clarification [5] and long-duration interaction [13]. Using motions
to communicate intents has been widely studied in human-robot
interaction, through body language [8], gestures, and social cues for
implicit communication [2, 3, 27], and has been shown to improve
teamwork performance and perception of commitment [2, 8, 11].

Formulated as a robot motion planning problem, intent com-
munication was specified as to reveal subgoal information during
trajectory execution, and referred to as "legible motions", in ma-
nipulation and navigation domains [7, 16]. Similar formulation
was applied to choose among abstracted action primitives for dy-
namic obstacle avoidance [18], and task assignment and dialog
for information exchange [12]. With legibility gaining attention
to equip motion planning with implicit communication and thus
fluent teamwork [4, 6, 12], there remains the concern of information-
overloading and exaggeration in such motions [3, 7]; moreover, the
discussion on the trade-off between the cost of information reveal-
ing and the benefit to teamwork has remained in context-specific
manners [7, 18].

For communication in teamwork in general, from the joint effi-
ciency perspective, it is still unclear on: how to measure whether
information-revealing is worth the cost, and how the benefits of
information revealing (to smoother interaction) generalize to other
domains and specifications. We address these aspects in this paper
through the concept of "information value" embedded in our joint
optimization formulation, and discuss the performance in a context-
aware manner that can adopt different domain specifications.

We choose navigation as the target domain for evaluation, for its
rich literature in human-robot interaction [29-31], essential role to
enable robot service in human environments [17], and general appli-
cability to integrate with other forms of interaction [19]. In naviga-
tion, the subgoals are of critical information for pedestrian interac-
tion, to predict motions for collision avoidance and planning [1, 26].
When multiple agents walk together as a group, the collaborative
setting requires group members to plan for one another to effi-
ciently and smoothly adapt to environmental changes [14, 20]. The
performance in subgoal identification can affect behavior patterns

in interaction, e.g. ways to approach humans to initiate conversa-
tion [25, 28]. Behavior patterns highly affect human perceptions
of the robot in close-distance interaction, e.g. better liking for ac-
tive yielding behaviors in group navigation [20, 22]. For intent
communication, in navigation domains, as goals are relatively far
away from each other, efficient paths have been suggested as being
more “legible” [16]. Intent communication in group navigation has
remained in the form of robot following human and passive sub-
goal identification [14, 22], whereas leader behaviors have limited
discussion on general group shape features [20].

3 PLANNING WITH TEAMMATE
UNCERTAINTY MODELING

In teamwork, agents collaborate under certain task specification.
A robot agent r at time ¢ is described through its physical state
s; € S and task specification 0] € ©", where S is the state space
and 0] € O is the set of task specifications. We assume that any
agent r has full observability to the physical state in the environ-
ment and its own task specification, s} and 0], and may only have
partial information to that of the teammate(s), 6;". The uncertain
information is kept in the belief state, b; € B", where B" is the
belief space. Same for agent —r. Here, for an agent —r concerned
with its uncertainty in teammate 6", b;” € A@", where AO" is the
probability space over the teammate task specification !.

In teamwork, subtask specifications are often dependent among
teammates. Communication is then essential to prevent failure
or inefficiency caused by false beliefs or insufficient information.
Communication requires domain knowledge. We model a teammate
agent —r concerned with the team based on st_r, s;, Gt_r and belief
over the partially-observable teammate state 6 . —r therefore makes
decisions taking into account self uncertainty. On the other hand,
an agent r maintaining belief over both teammate state 6" and
teammate’s belief over its own state b, " (6} ) has the ability to make
decisions also based on teammate uncertainty, which requires nested
inference. This way, the agent not only can reason about the effect
of uncertainty to oneself, but also that to the teammates.

Interacting with nested inference, or theory of mind, is commonly
seen among humans, to predict and infer about others’ behaviors
based on the explicit modeling of others and projection of oneself.
For example, when people invite friends who for the first time come
to their houses to cook, they introduce the kitchen, as they know
the others do not know where things are yet. Without this act, it can
lead to inefficiency, e.g. guests have to constantly ask for cooking
utensil locations.

Decision-making with nested inference is an enhanced capability
for robot teaming with humans. Yet, it should be noted that infor-
mation revealing can be costly; unnecessary information exchange
can also be bandwidth-exhausting and disruptive to ongoing tasks
and social interaction (e.g. conversation). Consider teamwork with
a robot preparing a dessert and the human making the main dish. If
the robot knows the kitchen better and introduces every commonly
used items, which the human may not need, the hospitality can
make teamwork extremely inefficient.

! In case where agent —r has partial observability of other variables, e.g. teammate
state s}, we keep them in the belief space B™"



In this section, we model teamwork as a multi-agent planning
problem, to evaluate action values not only to oneself but to the
team. We incorporate layers of team member beliefs into the plan-
ning objectives, and formulate information revealing as choosing
communicative actions along the teamwork optimization process
given teammate uncertainty.

3.1 Teammate Modeling

When working in a shared workspace with other agents, the re-
ward received by an agent —r after taking an action ,a;” € A™",
is dependent on not only its state, task specifications, but also
those of the others: R™"(s;,a;",a}|0;",0]). Here A™" is —r’s ac-
tion space, s; € S” X S™" denotes the joint state space. The transi-
tion function of each agent is as follows: 7" : " x A” — S and
T :STTXA™" — ST which can be truncated into: 7 : SXA — S,
where A = A" X A™". At each time ¢, agent —r makes an (probabilis-
tic) observation o,” € O~" out of the observation space O~", which
can be used to update its belief b;" over the hidden variables.

We define the belief space of a team member based on its layer
of nested inference (over teammate states): an agent r with zero
inference capability has no explicit modeling of uncertainty; we
refer to such agent’s policy as 7% : " x §7" x ©" — A".In
teamwork, this type of agent assumes what it knows is already
the complete domain knowledge, and teammates also know such
information. During planning, 7">° predicts about —r through 77>,
as if the the knowledge it possesses is common knowledge. In
collaborative tasks, where teammates share one objective function,
the policy 7" and its modeling of 7" are interchangeable:

af* = argnaxmaxE,, (s, a,)[R (st.a}.a;"|0].0;")
a, a, (1)
+Vr(5t+1|€tr, 9t_r)],

which can be solved by dynamic programming. This shared-knowledge

behavior assumption is common in computational models for large-
number-entity interaction simulation [9, 21]. The multi-agent plan-
ning formulation enables agents to reason about their action effects,
in addition to their own task value, but also that of the partner’s,
and it serves as the basic teamwork model in this work.

Here we consider (human) teammates —r as decision-makers
under first-order inference, who maintain their belief spaces over
@', the task specification space of agent r: b;” € A@". Since 0"
is directly observable to agent r and r’s uncertainty over —r task
specification is not explicitly modeled in —r’s first-order belief, —r
has the mental capacity to model r through the zero-inference
model, 7"°, for prediction (which plans with 77"-0 for prediction).

The observation function Q7" is then defined to acquire (pos-
sibly indirect) observations over ", Q7" : @ X A™" — O7". At
each time step t, belief b;" is updated based on newly received
observation o;”, the last action a,”, and the last belief b, as
follows :

b6 =B D, b0 pOFlal_y. 6] o) (2)

0] eO"
where f is a normalizing constant, and p(6; |0tr_1, a;_l, 0;") is the
belief propagation, calculated based on Q™" and 7 ~". In prediction

time (for planning), 0;" is sampled under the distribution of belief
b, " using Q7" for belief propagation.

Assuming agent —r is Bayesian rational, it uses 7#7>° for predic-
tion and makes a decision that maximizes the expected accumulated
future reward, or the value function V(s;"|6; ", b;"):

VG167 = max Byr gr prolR7(57" 0" {167 )]
a, € (3)

+Eb;+rl [V(S;_Clw_r, b;.::l])

The optimal action a;"™*

estimate V(s; |0, ", b; " ):

is calculated to maximize the value

a;"" =arg max By gr_prolR77(s;",a;",a;10;7,b;")]
a;" €A )
-HE[];I1 [V(St+1 |9t—r’ b;—:ll)’

and we denote this policy as: a;"* ~ 77" 1(s;|0;7, b, "), the pol-
icy of agent —r with one layer of inference, under the Bayesian
rationality assumption.

With one-layer inference, the form of information exchange
is limited to passive inquiry: agents ask questions, wait, or ex-
plore/seek for feedback. The decision-making under partial ob-
servability yields agent behaviors of reasoning under uncertainty.
Using this policy for prediction, it serves as a quantitative measure
of long-term delay or performance degradation due to insufficient
information. With 7~"! for prediction, the robot can reason about
its action effects, not only based on its own task value, but also the
partner’s performance improvement due to information gain.

3.2 Planning under Teammate Uncertainty

We now consider agent r with belief over the agent —r’s first-layer
inference, bt_' € AO", which is the second-layer inference with
belief over partner belief and its own uncertainty (possessed with
first-layer inference): b} € A@™" X AAO".

At each time step ¢, belief b over the truncated belief space is
updated; it contains two subsets, one is over the first-layer belief,
b;(6;"), which is updated based on newly received observation o},
last action a}_, and last belief b;_,. The other is over the second-
layer belief, b} (b; "), which is a belief over the belief of teammate.
To make this update, the belief propagation of teammate infer-
ence is made upon the simulated observation 6;”, which can only
be acquired by an approximated observation function Q7. Q7"
samples 6, given sampled l;t_’ and é[—r (from its belief b}) and pre-
dicted a;" ~ n_r’l(st|ét_r, I;t_r) The belief update of second-layer
inference model is then:

bp=B Y, biGsplisflal_y a7y 0067, (5)

is;eIS”

where is” € IS" is the interactive state in the space that agent r
maintains its belief over: IS" = ©7"A@", with the second-layer
inference. The value function and optimal action function are the
same as in Eq. 3 and Eq. 4, except for to use the one-layer in-
ference policy a;" ~ 7~ "1(s;|0;7,b;") instead of the zero-layer
one. The optimal policy of second-layer inference is denoted as:
ay* ~ x"2(s¢107, b}), under the Bayesian rationality assumption.
Under this inference setting, information exchange can be done
through active revealing. When agent r detects teammate uncer-
tainty in its belief update process of b; (b™"*), it can decide if to
reveal information based on 72 In scenarios where teammate



uncertainty is certain, agents with 7”2 can provide information
that improves teammate performance.

3.3 Efficient and Appropriate Communication

Consider again the kitchen scenario with the robot assigned to
make a dessert and the human assigned to the main dish, where
the human is about to look for salt to season the dish: with team-
work planning over nested beliefs, the robot can make a minimal
communication effort and show only the salt but not other possibly-
relevant information; moreover, if the robot needs sugar in the same
cabinet, it can grab the salt at the same time and place it where
the teammate can see, which seamlessly helps teamwork with the
least delay to its own task. We call this behavior a corroborative
act; it helps its teammate with critical information, while subtly
balancing its own efficiency. This behavior relies on nested infer-
ence over teammate uncertainty on domain specification (salt can
location), and multi-agent planning allows the robot to reveal such
information because of predicted teammate inefficiency (searching
for the salt), in a way that maximizes teammate performance (by
placing it somewhere visible) while minimizing the cost of its own
(by grabbing the salt while getting sugar). We claim this behavior
is crucial for efficient and therefore fluent teamwork.

To demonstrate the effectiveness of planning over nested beliefs
for information revealing, or corroborative act, in addition to the
assumption that the physical states of both human and robot agents
sy are fully observable to both agents, we focus on a setting in which:
(i) the human’s task depends on the robot’s, which the human is
uncertain of, (ii) the robot knows the human’s task specification,
and (iii) the human does not know the robot’s task specification and
the robot knows such uncertainty of the human. This setting focuses
on the situation where the human teammate needs information
from the robot, the robot knows how its information will affect
teammate performance, and it knows that teammate does not have
its information yet.

This setting applies to teamwork with production line where
tasks are dependent on that of the upstream; it also applies to teach-
ing and guidance tasks, where teammate’s need and uncertainty is
of public information to the instructor. By focusing on the belief
over teammate belief b} (b; ") but omitting that on ;" and partial
observability to s, we focus the discussion on the improved team-
work with communicative planning using nested beliefs, which
legible motion also follows for later comparison, and omit the de-
tails on maintaining complex beliefs and making inferences over
the (possibly weakly observable) belief space.

4 INFORMATION REVEALING THROUGH
MOTION PLANNING

Following the setting detailed in previous section, we compare this
nested inference approach for robot “theory of mind”, with legi-
ble motion [7, 18], which demonstrated intent-expressive motion
planning for fluent teamwork [4, 6].

Note that we choose motion planning and implicit communi-
cation as the target community in this work, given that there is
literature to compare with, but the formulation can be used in
other planning or integration work, such as symbolic planning and

integrated task and motion planning, and planning with explicit
communicative actions.

4.1 Legible Motion

In legible motion planning [7, 12], the implicit information reveal-
ing along with robot motions is achieved through optimizing the
(discounted) accumulated information gain and efficiency of the
trajectory &, which is a sequence of waypoints for the robot to track
to, through the following objective function:

&= argﬂgle(é‘)f(t) —AC(©). (6)

where C is a domain-specific cost function, defined to generate
efficient and "predictable” motions [7]; H is the "legibility” function,
which incorporates the information gain for partner inference of
the correct subgoal. As it was assumed in their work that infor-
mation has discounted importance over time, early information
revealing was encouraged in legible motions by applying discounted
weights on H over time using f (t). As legibility was introduced as an
an counter factor for generating predictable motions, information
revealing was treated as an "anti-efficiency" factor. For such reason,
legible motion formulation used a regulator A to balance trajectory
efficiency and information gain, following the common formulation
in exploratory planning [24].

4.2 Corroborative Act

Here, we instead formulate information revealing in teamwork
from the perspective of improving team performance, and let
the planner decide when it is most efficient and effective to provide
information. Following the formulation in Sec.3, corroborative acts
maximize team performance through:

a;* = argmax BEyr[R"(is;, 7" (is} ), ap)] + Byr_[V(is},,]), (7)
a;EAr t+1

where R" is the robot’s reward function, parametrized to encourage
task completion of both teammate and itself. is] includes belief
over teammate belief over robot task specification, parametrized
by 8] € ©": b; € A(A@"), where @" is the task specification
parameter space. The belief update follows that in Eq. 5, but only
on the second-layer inference:

b= Y. bl (b pby lapTy 67, (8)
b;"eAS”

where p(b;"|a,”;,6;") is the simulated belief propagation of agent

—r. With this formulation, corroborative acts balance between team-
work efficiency and the cost of information revealing; it reveals
information when it is critical to improve teammate future perfor-
mance and it can do so in an efficient manner, utilizing the modeling
of teammate under uncertainty for teamwork performance predic-
tion. We later refer to our approach as NICA: Nested Inference for
Corroborative Acts.

4.3 Corroborative Act v.s. Legible Motion

During the planning process of corroborative acts, information gain
is assessed by the accumulated improvement over time it brings to
team performance; therefore, information is revealed only when
its value is worth the cost. For example, when the human part-
ner is assembling parts packed in boxes which are delivered by



the robot, with the boxes containing identical contents, the ro-
bot revealing which box it will deliver has marginal improvement
for teammate performance. The first difference between corrob-
orative act and legible motion is that the robot may not always
reveal information, such as when the teammate already knows the
information (through explicit modeling of teammate beliefs), or
when the benefit to teammate performance is not worth the cost
of information-revealing. Second, in situations where information
is not immediately useful, it can be revealed any time before it
becomes critical for selecting a cost-efficient motion. Compared to
legible motion, which encourages early intent revealing, we aim to
make succinct communication that is more cost efficient yet equally
effective through the corroborative act formulation.

Therefore, from the timing perspective, when information re-
vealing is critical for teammate performance right away, e.g. human
teammate is waiting for robot signal of which cup to empty, corrob-
orative act shall perform similarly to legible motion. When informa-
tion marginally affects the optimal value at current state, however,
corroborative act shall generate efficient motion for team task com-
pletion without salient information revealing. When information
is critical to teammate but not until in later states, corroborative
act may delay revealing, in case early revealing is less efficient.

Finally, in legible motion, A has significant effect on robot behav-
ior, which requires careful tuning and domain expertise. In corrob-
orative acts, such tuning is built-in; adequate motion is generated,
because exaggeration is cost-inefficient to teamwork performance
and non-salient signal is ineffective for teammate inference.

5 VALIDATION

Here we choose group navigation as the domain for validation and
we detail the belief propagation, the reward paramatrization, and
the planning techniques to implement smooth group coordination;
but the approach can be generalized to other domain specifications.

Agents traveling together is widely studied in group naviga-
tion [14, 20, 22]; when walking together, agents need to adapt
group shape/formulation to adjust to environment changes, e.g.
to form a line when passing through narrow corridor, or to avoid
to the side when partner’s path is occluded. They therefore need
the ability to plan for one another to efficiently reach the subgoal,
which follows the setting of collaborative tasks under shared task
specification. In group navigation, agents often do not coordinate
a priori where they are going, but decide on-the-fly based on real-
time observations. Communication either explicitly or implicitly
about local decisions (on subtask specifications), is therefore es-
sential to smooth teamwork. Here we choose the guidance task
to demonstrate the effectiveness of our approach; this setting ap-
plies to service robots for helping pedestrians unfamiliar with the
environment, e.g. visitors in museums or travellers in airports, in
which the human is (known to be) uncertain of the environment
specification and the robot knows such information.

5.1 Domain: Joint Navigation

We here detail the domain design and the implementation for agents

traveling in groups, including the subgoal inference model for
group followers p(b;"|a;’;,6;",b;”,), and the reward function

C for smooth coordination among travellers in groups. We then in-
troduce teammate behavior under uncertainty using the first-layer

inference policy: 77"1(is; "), and the intuition behind the interac-
tion with the robot using second-layer inference policy: 7"+2(is}).

5.1.1 Domain Design. We consider a corridor domain, where po-
tential goals are aligned along with the walking direction. We
choose this domain for the following two reasons, which help to
distinguish our approach from the legible motion formulation: (i)
here, goal information has no critical influence on follower optimal
action in Eq. 4 until the timing is one-step/horizon away from the
first entrance; no matter which entrance is the final goal, the opti-
mal action, until destination is reached, is to walk straight along the
corridor. As a result, goal information is not critical to teammate
performance until a later timing in the planning horizon, which
contradicts the assumption in legible motion. (ii) information re-
vealing is less costly later along a trajectory, as small deviation
from the first entrance serves as a salient signal to infer the second
entrance as the right goal. As a result, early revealing in legible
motion appears costly compared to the succinct motion using our
approach.

5.1.2  Belief Propagation and State Transition. We assume agent
—r has direct observability to the position and velocity of agent r,
if r is within the visible space, defined as [, 7] from its walk-
ing direction, to sample 6;" for belief propagation. The simulated
belief propagation function of agent —r, p(0]|0]_,,a,’;,6;"), is
then affected by aj_, through 6;". During the planning process,
at each time ¢, given past action aj_,, the robot simulates belief
propagation to acquire b} (b;”). The sampled b, " is then used to
acquire teammate action a;” by Eq. 4, to forward transit to s;+1,

along with the choice of robot action aj.

5.1.3 Reward/Cost Function: C. To plan as a competent traveller
and group member, we evaluate action sequences based on: group
travel efficiency (motion duration, weighted by 1), desired group
configuration regulation (weighted by 5 in quadratic form), human
walking pace regulation (weighted by 5 in quadratic form), and
head orientation regulation. We apply side-by-side walking as the
desired group configuration, and 0.7 m/s as the desired human
walking pace.

5.1.4 Search and Action Space. We apply tree search to finite-
horizon T to solve the optimization with discretized dynamics/state-
transition. Based on the observation that people tended to have a
response time of 3 sec before intersections or potential collision,
we apply the lookahead to 4 sec, and use the admissible Euclidean-
distance heuristic for future value estimate V7. We sample smooth
actions by applying constant speed change and angular velocity of
the range [-1,1] m/s? and [-22.5,22.5] deg/s. We choose 1 sec as the
duration of 1 planning horizon, in account for that humans tend to
react 1 sec after environmental changes.

5.1.5 x"! Performance. Due to the good expected value in front
of the first entrance, the simulated follower using 7~"! stops there
under an incorrect prior, which delays the group travel. Group fol-
lowers hesitating in front of decision points are commonly observed
in the real world [23]. The time delay then serves as a motivation
and quantitative measure in assessment to information-revealing
motions; and our approach balances this cost by incorporating
77" into the prediction step of our planning approach.



Figure 2: The trajectories of legible motion (bottom) and NICA (top) in simulated domains (left) and during human study (right). Legible
motion generates a curved trajectory away from the first entrance starting ¢ = 4s, whereas NICA produces a short-duration deviation when
close to the first entrance at t = 6s.

To benchmark the performance comparison, we solve for legible
motion using the same discrete setting, using accumulated reward
instead of integral over time. For discounted weighting, we apply
a discount factor y = 0.9 over time horizon, in replacement of
f(t). We apply A = 0.05, with which the robot curves its trajectory
smoothly to bring the group to the center of the corridor but not
all the way to the other side.

5.2 Experimental Design

We conducted a human study in a guidance task, where the human
participants were instructed to reach an unknown target destina-
tion following a robot’s guidance. For each participant, a training
trial was run to familiarize the participant with the task and walk-
ing with the robot, to eliminate variance introduced by the nov-
elty effect. Two conditions were then run within-subjects and we
counterbalanced the conditions to prevent order effects: one imple-
mented our approach and the other implemented legible motion [7]
for trajectory generation. We collected participants’ subjective eval-
uation of the robot’s performance at the end of each experiment.
The test took approximately 20-30 minutes, and a gift was delivered
afterwards as compensation for their time.
We hypothesize the following, compared with legible motion:

(1) NICA generates motion that has high ratings on clarity of
intent

(2) NICA generates motion is perceived as more natural and
predictable

(3) NICA leads to a more comfortable experience during the
collaboration

(4) NICA leads to higher rating of the robot being safe, intelli-
gent, capable, thoughtful, and fluent to team with

5.3 Independent Variables

The trajectories run by the robot in the experiments can be seen in
Fig. 2. The leftmost figures demonstrate the trajectories generated
in the simulated corridor environment, by NICA (upper) and legible
motion (lower). The agent on the left (marked in bright green) is
the simulated robot, and that on the right (marked in blue) is the
simulated pedestrian, who follows the robot.

With legible motions, the robot deviates its route to the left
early, due to the encouragement in early information revealing, and
makes a curve that moves away from the first entrance to indicate
goal location. The robot then curves back and turns towards the
final destination once the path deviation is sufficient to distinguish
between the two velocity directions towards two goals. With NICA,
the robot stays straight and does not deviate its route until it is
close to the first entrance; this is efficient from the joint efficiency
perspective, since early revealing has no additional benefit and small
deviation when close to the goal serves sufficiently as a salient signal
to not go to the first entrance. Due to the multi-agent planning
formulation, the robot deviates to the other side of the human to
prevent potential path occlusion and pressure against the wall.

The real-time performance while walking with a participant is
shown in Fig. 2; we apply human tracking using a 2D laser scan-
ner [15] to online detect potential collision. The overall experience
took about 16 s to reach the destination. While legible motion
started deviating to the left starting t = 4s, NICA did not do so
until + = 6s. Due to the larger tracking error contributed by the
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Figure 3: The statistical analysis on subjective measures, combin-
ing subscales. The bar values are the mean (M) and error bars are
the standard deviation (SD). NICA significantly outperforms in per-
ceptions of being socially appropriate, predictable and intent-clear.

large orientation change, the turning-back of legible motion seemed
more delayed, which resulted in a larger curved motion and slight
delay in arrival time (¢t = 17s).

5.4 Measures

We conducted survey with 18 questions on robot (i) motion legibility
and predictability based on Dragan’s metrics [6] (1-5), (ii) trust and
fluency of teamwork based on Hoffman’s metrics for fluency in
human-robot collaborations [10] (6-8), (iii) capability as a teammate
for the guidance task, including: 9. the robot was thoughtful about
how it guided me to the destination, 10. the robot was intelligent, 11.
the robot was efficient, 12. I feel safe walking next to the robot, 13.
the robot is capable of directing me, 14. I am confident in the robot’s
ability to help me and (vi) traits as a social agent, including: 15. the
robot behaved naturally, 16. the robot was awkward to interact with,
17. the robot is socially appropriate, and 18. I feel uncomfortable
with the robot. Responses were collected using 5-point Likert scale.

5.5 Experimental Setup and Protocol

The experiment took place in a public corridor, along which several
classrooms are located. The experiment starts at a location close to
the end of the corridor, where two classroom entrances were on the
right as potential destination. The robot always took the participant
to the first entrance during the training trial, and to the second
entrance during official trials. This way, the goal location/distance
is controlled among the two conditions yet participants would think
that the goal is not fixed, to eliminate goal location as a confound.

The participant first read the instructions explaining a scenario
in which the participant is being requested to reach a service loca-
tion, with a robot sent to guide him/her to ensure timely arrival.
The start location was shared among every trial, facing the end of
the corridor. Neither the locations nor destination number were
explicitly instructed.

In all training trials, the robot runs NICA and follows a straight
line to the goal (first entrance) at a fixed speed, 0.7 m/s, and with a
fixed distance to wall throughout the walking. The robot started
slowing down 1 sec before reaching the destination. As a test of our
assumptions about walking speed, participants were asked after
the training trial whether the robot’s speed was acceptable to them.
All reported that the speed of the robot was fine to continue the
experiment with. As we observed in pilot trials that the slowing-
down motion also affects people’s perceptions of how clear the

Legible Motion NICA

Natural (p=0.028") 2.92(0.79)  3.82(0.83)
Fluent to team with (p=0.05") 3.33 (0.78) 4.00 (0.71)
Efficient (p=0.09) 3.40 (1.17) 4.22 (0.67)
Capable of guidance (p=0.25) 4.08 (0.90) 4.54 (0.88)
Intelligent (p=0.63) 3.58 (0.63) 3.85 (0.80)
Safe (p=0.79) 4.17 (0.83) 4.33 (0.49)
Thoughtful (p=0.84) 3.70 (1.16) 3.90 (0.99)
Future interaction (p=0.96) 4.25 (0.87) 4.38 (0.77)
Trust (p=0.98) 3.83 (0.72) 3.92 (0.79)
Confident in its ability (p=1.00) 4.25 (0.62) 4.25 (0.62)

Table 1: Responses on individual questions, reported as "[M]
([SD])": NICA was perceived as more natural (significant), more flu-
ent to team with (marginal significant), and had equal or better per-
formance in the rest of the items. Listed results are ordered based
on p value.

goal is indicated, e.g. how quick the slow-down was, how far away
the robot started slowing down, etc., participants were asked to
focus their evaluation of the two conditions only on the walking
portion of the interaction, not the final approach to the goal, which
was common across both conditions, but sensitive to the quality of
localization and pedestrian tracking. Because the study was within
subjects and counter-balanced by order, we expect that this would
not affect the validity of the study.

5.6 Data

We collected 16 participants in the human study, with 8 females and
8 males, who are visitors or students on campus. The experiment
used a within-subjects design to enable participants to compare
the two motions. The order of the conditions was counterbalanced
to control for order effects. Among the experiments, there were
occasional jittery motions, due to tracking delay from network
communication issues. We filtered out 3 participants’ entire data
which had experienced the jittery behavior in more than one trial
(including the training trial); we filtered out 1 additional response
to legible motion due to observing jittery behavior during the test,
in which legible motion went second.

6 RESULTS

The survey responses can be seen in Fig. 3, with responses to legible
motions on the left side in bright magenta, and those to our planner
on the right in dark blue. We conducted t-test to on combined
subscales of legibility (question 1-3), predictability (4-5), and social
appropriateness (question 16-18), with Cronbach’s @ > 0.7. The
results with significance (p < 0.05) are highlighted with =, and
those with strong significance (p < 0.01) are highlighted with with
#x. For the rest of the individual questions, we conducted Wilcoxon
signed-rank test and report p value for significance test, shown in
Table. 1. Using t-test on combined subscales, NICA significantly
outperforms the legible motion by being: more socially appropriate
(p = 0.027%), supporting our hypothesis (3) on interaction comfort,
and more intent-clear (p = 0.001"*), which does not support our
hypothesis (1) yet with better results. NICA is also perceived as
more predictable (p = 0.004*") using t-test on combined subscales
and more natural (p = 0.028") using Wilcoxon signed-rank test,



which supports our hypothesis (2). For hypothesis (4), most items
are not supported yet NICA was rated more fluent to team with
with marginal significance (p = 0.05").

Among the scales and questions with significance using t-test
and Wilcoxon signed-rank test: for traits of a social agent, including
being socially appropriate (M=4.14, SD=0.56) and natural (M=3.82,
SD=0.83) make the robot more suitable for long-duration interac-
tion; being more fluent to team with (M=4.00, SD=0.71) makes the
robot more suitable to engage teamwork with humans. While other
traits in robot capabilities and interaction qualities had no signifi-
cant trends, with results shown in Table. 1, ratings for robot being
safe, capable, and future interaction were on average ranked above
4.0 (Somewhat Agree) for both planners; ratings for robot being
intelligent and thoughtful, and trust-worthy were on average above
3.5 for both planners. Across all 18 self-report outcomes, NICA had
equal or better performance compared to legible motions.

In navigation, humans often face towards their walking direction
to maintain the ability to observe to the upcoming surroundings
despite conversation and distraction. Efficient paths have also been
suggested as be more intent-clear in the navigation domain previ-
ously [16]. During our legible motion experiments, we observed
that participants constantly turned their heads and looked at the
robot when it altered its direction and deviated away to the side
. Many participants followed the robot all the way from the side
to the middle of the corridor, as shown in Fig. 4. We assume these
behaviors can be attributed to confusion or uncertainty.

7 DISCUSSION

7.0.1  Descriptive Responses to Robot Performance. After the survey
questions for quantitative measure for each planner, we discussed
robot performance with some participants, and collected their re-
sponses to: fluency in teamwork, social appropriateness, and prefer-
ences for future interaction. Overall, we found that participants often
mentioned distance in their descriptions of social appropriateness.
Some preferred constant distance to the wall during walking and
referred to it as being more natural or like walking with a human.
Some participants did not perceive the planners as either appro-
priate or inappropriate. One indicated that there was few social
interaction, like verbal communication, and was not concerned
if the robot was inappropriate. One did not find any differences
among the planners or did only notice distance changes.

Goal indication was often described as a bonus for fluent teaming
and future interaction. One described NICA as being "fluent and
more predictable". For future interaction, some preferred legible
motion because of its very clear intention. Some preferred NICA
because it had some goal indication while maintaining constant
distance to the wall.

7.0.2  Surrounding Conditions. While we controlled the workspace
to be cleared during the experiment, e.g. we waited until pedestrians
had passed, other pedestrians sharing the workspace have a strong
influence on how participants perceived the robot’s motion. One
participant experienced interruption when the robot reached the
goal and slowed down; he asked if the robot was supposed to do
that when a person approached from behind. Two participants
described legible motion as it can "weave through the crowd" and
perceived it as more aware of the surroundings.

Figure 4: Shots of participants at the same time during the legible
motion experiment: we often observed participants following the
robot to the middle of the road (Left), while some stayed on their
original routes or in between (Right).

7.0.3  Other Responses and Dominant Factors. While we reminded
the participants to focus on the walking experience, many re-
sponded on the slowing-down behavior when approaching the
destination. One suggested a red-glowing functionality when the
robot is braking, given the human-following scenario. We recognize
the implementation of goal-approaching behavior can have great
influences on human’s perception of robot performance.

While distance and motion smoothness appeared to be dominant
factors of human perceptions of the experience, trajectories were
sometimes off-route due to occasionally larger localization errors,
contributed by the feature/landmark-poor long corridor with glass-
wall reflections. We recognize this as the major source of noise for
experiment condition, other than the occasional jittery motion due
to network buffer issues.

8 CONCLUSION AND FUTURE WORK

In this work, we proposed that efficient information revealing is
critical to human human-robot teamwork performance, and robot
teammates need the ability to reason about human teammate un-
certainty to enable efficient communication. To achieve this ability,
we proposed nested inference modeling and incorporate it into a
multi-agent planning formulation, to reveal information based on
benifits to teamwork, which is concerned with both self efficiency
and teammate performance improvement from the information-
revealing process. We refer to the succinct actions in information
revealing as corroborative acts, or NICA as the planner for mo-
tion generation, and validate the approach with human study on
a robot guidance task. The results showed that NICA is perceived
as significantly more natural, socially appropriate, and fluent to
team with, while being both more predictable and intent-clear com-
pared to the legible motion formulation. It was also suggested that
NICA was perceived as more fluent to team with with marginal
significance. NICA had equal or better performance across all 18
self-report outcomes.

While we implemented corroborative acts in motion planning in
the navigation domain, the planning formulation can be generalized
to other domains with more complex domain specifications and
task structure. Other forms of communicative actions can also be
considered. We also look forward to applying this approach to
dynamic environments, where modeling of partial observability
and communication become critical, to efficiently online coordinate
teammates to adapt to unexpected changes.



REFERENCES

(1]

[2

[

3

=

[13]

[14

[15]

[16

[17

(18]

[19]

[20

[21]

[22]

[23]
[24

Haoyu Bai, Shaojun Cai, Nan Ye, David Hsu, and Wee Sun Lee. 2015. Intention-
aware online POMDP planning for autonomous driving in a crowd. In 2015 ieee
international conference on robotics and automation (icra). IEEE, 454-460.
Cynthia Breazeal, Cory D Kidd, Andrea Lockerd Thomaz, Guy Hoffman, and Matt
Berlin. 2005. Effects of nonverbal communication on efficiency and robustness in
human-robot teamwork. In 2005 IEEE/RSY international conference on intelligent
robots and systems. IEEE, 708-713.

Abhizna Butchibabu, Christopher Sparano-Huiban, Liz Sonenberg, and Julie Shah.
2016. Implicit coordination strategies for effective team communication. Human
factors 58, 4 (2016), 595-610.

Mai Lee Chang, Reymundo A Gutierrez, Priyanka Khante, Elaine Schaert] Short,
and Andrea Lockerd Thomaz. 2018. Effects of integrated intent recognition and
communication on human-robot collaboration. In 2018 IEEE/RST International
Conference on Intelligent Robots and Systems (IROS). IEEE, 3381-3386.

Robin Deits, Stefanie Tellex, Pratiksha Thaker, Dimitar Simeonov, Thomas Kollar,
and Nicholas Roy. 2013. Clarifying commands with information-theoretic human-
robot dialog. Journal of Human-Robot Interaction 2, 2 (2013), 58-79.

Anca D Dragan, Shira Bauman, Jodi Forlizzi, and Siddhartha S Srinivasa. 2015.
Effects of robot motion on human-robot collaboration. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on Human-Robot Interaction. ACM,
51-58.

Anca D Dragan, Kenton CT Lee, and Siddhartha S Srinivasa. 2013. Legibility
and predictability of robot motion. In Human-Robot Interaction (HRI), 2013 8th
ACM/IEEE International Conference on. IEEE, 301-308.

Michael J Gielniak and Andrea L Thomaz. 2011. Generating anticipation in robot
motion. In 2011 RO-MAN. IEEE, 449-454.

Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E 51, 5 (1995), 4282.

Guy Hoffman. 2019. Evaluating fluency in human-robot collaboration. IEEE
Transactions on Human-Machine Systems 49, 3 (2019), 209-218.

Guy Hoffman and Cynthia Breazeal. 2007. Effects of anticipatory action on
human-robot teamwork efficiency, fluency, and perception of team. In Proceedings
of the ACM/IEEE international conference on Human-robot interaction. ACM, 1-8.
Ross A Knepper, Christoforos I Mavrogiannis, Julia Proft, and Claire Liang. 2017.
Implicit communication in a joint action. In Proceedings of the 2017 acm/ieee
international conference on human-robot interaction. ACM, 283-292.

Emiel Krahmer, Marc Swerts, Mariet Theune, and Mieke Weegels. 2001. Error
detection in spoken human-machine interaction. International journal of speech
technology 4, 1 (2001), 19-30.

Markus Kuderer and Wolfram Burgard. 2014. An approach to socially compliant
leader following for mobile robots. In International Conference on Social Robotics.
Springer, 239-248.

Angus Leigh, Joelle Pineau, Nicolas Olmedo, and Hong Zhang. 2015. Person
tracking and following with 2d laser scanners. In Robotics and Automation (ICRA),
2015 IEEE International Conference on. IEEE, 726-733.

Christina Lichtenthiler, Tamara Lorenzy, and Alexandra Kirsch. 2012. Influence
of legibility on perceived safety in a virtual human-robot path crossing task. In
RO-MAN, 2012 IEEE. IEEE, 676-681.

Felix Lindner. 2015. A conceptual model of personal space for human-aware
robot activity placement. In Intelligent Robots and Systems (IROS), 2015 IEEE/RS}
International Conference on. IEEE, 5770-5775.

Christoforos I Mavrogiannis, Valts Blukis, and Ross A Knepper. 2017. Socially
competent navigation planning by deep learning of multi-agent path topologies.
In 2017 IEEE/RS7 International Conference on Intelligent Robots and Systems (IROS).
IEEE, 6817-6824.

Marek P Michalowski, Selma Sabanovic, and Reid Simmons. 2006. A spatial
model of engagement for a social robot. In Advanced Motion Control, 2006. 9th
IEEE International Workshop on. IEEE, 762-767.

Luis Yoichi Morales Saiki, Satoru Satake, Rajibul Huq, Dylan Glas, Takayuki
Kanda, and Norihiro Hagita. 2012. How do people walk side-by-side?: using a
computational model of human behavior for a social robot. In Proceedings of the
seventh annual ACM/IEEE international conference on Human-Robot Interaction.
ACM, 301-308.

Mehdi Moussaid, Niriaska Perozo, Simon Garnier, Dirk Helbing, and Guy Ther-
aulaz. 2010. The walking behaviour of pedestrian social groups and its impact
on crowd dynamics. PloS one 5, 4 (2010), €10047.

Ryo Murakami, Luis Yoichi Morales Saiki, Satoru Satake, Takayuki Kanda, and
Hiroshi Ishiguro. 2014. Destination unknown: walking side-by-side without
knowing the goal. In Proceedings of the 2014 ACM/IEEE international conference
on Human-robot interaction. ACM, 471-478.

Information omitted for blind review. [n.d.].

Nicholas Roy, Wolfram Burgard, Dieter Fox, and Sebastian Thrun. 1999. Coastal
navigation-mobile robot navigation with uncertainty in dynamic environments.
In Proceedings 1999 IEEE International Conference on Robotics and Automation
(Cat. No. 99CH36288C), Vol. 1. IEEE, 35-40.

[25] Satoru Satake, Takayuki Kanda, Dylan F Glas, Michita Imai, Hiroshi Ishiguro, and

Norihiro Hagita. 2009. How to approach humans?: strategies for social robots to
initiate interaction. In Proceedings of the 4th ACM/IEEE international conference
on Human robot interaction. ACM, 109-116.

[26] Volkan Sezer, Tirthankar Bandyopadhyay, Daniela Rus, Emilio Frazzoli, and

David Hsu. 2015. Towards autonomous navigation of unsignalized intersections
under uncertainty of human driver intent. In Intelligent Robots and Systems (IROS),
2015 IEEE/RST International Conference on. IEEE, 3578-3585.

[27] Julie Shah and Cynthia Breazeal. 2010. An empirical analysis of team coordination

behaviors and action planning with application to human-robot teaming. Human
factors 52, 2 (2010), 234-245.

Chao Shi, Michihiro Shimada, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro
Hagita. 2011. Spatial formation model for initiating conversation. Proceedings of
robotics: Science and systems VII (2011), 305-313.

Elena Torta, Raymond H Cuijpers, James F Juola, and David Van Der Pol. 2012.
Modeling and testing proxemic behavior for humanoid robots. International
Journal of Humanoid Robotics 9, 04 (2012), 1250028.

Araceli Vega, Luis ] Manso, Douglas G Macharet, Pablo Bustos, and Pedro Nufiez.
2018. Socially aware robot navigation system in human-populated and interactive
environments based on an adaptive spatial density function and space affordances.
Pattern Recognition Letters (2018).

Michael L Walters, Kerstin Dautenhahn, René Te Boekhorst, Kheng Lee Koay,
Christina Kaouri, Sarah Woods, Chrystopher Nehaniv, David Lee, and Iain Werry.
2005. The influence of subjects’ personality traits on personal spatial zones in a
human-robot interaction experiment. In Robot and Human Interactive Communi-
cation, 2005. ROMAN 2005. IEEE International Workshop on. IEEE, 347-352.



	Abstract
	1 Introduction
	2 Related Work
	3 Planning with Teammate Uncertainty Modeling
	3.1 Teammate Modeling
	3.2 Planning under Teammate Uncertainty
	3.3 Efficient and Appropriate Communication

	4 Information Revealing through Motion Planning
	4.1 Legible Motion
	4.2 Corroborative Act
	4.3 Corroborative Act v.s. Legible Motion

	5 Validation
	5.1 Domain: Joint Navigation
	5.2 Experimental Design
	5.3 Independent Variables
	5.4 Measures
	5.5 Experimental Setup and Protocol
	5.6 Data

	6 Results
	7 Discussion
	8 Conclusion and Future Work
	References

