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Abstract—1t is becoming increasingly feasible for robots to
share a workspace with humans. However, for them to do
so safely while maintaining agile performance, they need the
ability to smoothly handle the dynamics and uncertainty caused
by human motions. Markov Decision Processes (MDPs) serve
as a common framework to formulate robot planning problems.
However, because of its single-agent formulation, such planner
cannot account for human reaction when evaluating robot
actions. The robot can thus suffer from unsafe motions and
move in ways that are hard for nearby humans to understand.
To resolve this, we instead model robot planning in human
workspaces as a Stochastic Game, and contribute a robust
planning algorithm, which enables the robot to account for its
prediction errors in human responses to prevent collision, while
not losing agility, opposed to traditional maximin optimization
techniques, by applying maximin operation only at “critical
states”. We validate the approach under partial knowledge of
pedestrian behaviors, and show that our approach encounters
zero collision despite imperfect prediction, while improving path
efficiency, compared to baselines.

I. INTRODUCTION

In robotics, cost-minimization solutions using MDPs have
shown success to generate efficient trajectories in static
workspaces [1][2]. In environments with dynamic objects,
however, the MDP formulation is limited by its intrinsic
static environment assumptions: 1) state transition function
is time-invariant, 2) reward function is time-invariant, and
therefore 3) state value function is time-invariant. As these
assumptions no longer hold in dynamic environments, tra-
ditional motion planning literature suffers from poor perfor-
mance when applied in human workspaces.

Common strategies to deal with the above disadvantages
include frequent replanning and short-horizon planning; nev-
ertheless, the lack of awareness of future variations leads
the planner to shortsighted decisions (causing socially in-
competent behavior for human interaction [3]), or overly
conservative decisions for long-horizon planning (referred
to as the freezing-robot problem [4]). One scenario that
traditional planners fail to realize is the commonly-seen
flow-following strategy in crowd navigation [5] — people
follow one another to reach shared short-term subgoals. This
strategy relies on policy evaluation based on the future paths
of nearby agents, which traditional static cost formulations
cannot incorporate.

To resolve the issue, we first formulate robot planning in
human workspaces as a multi-agent problem using stochastic
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games, to compute the dynamic state-action values that are
influenced by the states and actions of other agents (here,
the humans). We develop a sampling-based algorithm to
plan on this formulation, and address safety, or collision
prevention, by applying maximin operations on samples
(of pedestrian motions) where collision may incur under
worst-case prediction, using off-the-shelf collision detection
techniques. While traditional robust planning methods can
prevent unwanted events and ensure worst-case performance
(by applying worst-case prediction throughout the whole
planning process), the resultant behavior can be overly
conservative [6], which degrades robot motion agility and
smoothness around humans [7]. Our proposed approach only
applies worst-case prediction at “critical” states that collision
could incur, to prepare preventive motions early while not
assuming adversarial pedestrians elsewhere. The approach
contributes by planning carefully only when it matters, and
yields improved path efficiency while maintaining safety.

As prior crowd navigation approaches, which assume
homogeneous (and reciprocal) crowd behaviors for robot
plan evaluation, were shown to suffer from prediction er-
ror when deployed in real world [8] [9], we therefore
proposed heterogeneous pedestrian models based on field
study for evaluation, to validation safety under partial model
knowledge. We constructed a baseline that replicates the
reciprocal behavior in learning-based approaches in the lit-
erature [4] [10], and show that our planner prevents 55%
of unanticipated stop (safety-ensured maneuver), and is safe
encountering all types of pedestrians, despite its incomplete
knowledge of pedestrian models.

II. RELATED WORK

Despite the efforts to introduce human factors into plan-
ning [11] [12], traditional motion planning algorithms have
shown to generate motions that appear socially incompe-
tent [13] [3] — inconsistent motion arose when solving for
the optimal trajectory under highly dynamic environment.

On dynamic obstacle avoidance approaches [14] [15], used
on low-level control to navigate towards a local direction,
their constant-speed model assumption leads to myopic de-
cision in response to human motion; they are therefore used
as collision detector during plan execution [9] [16] [8], which
yields unsmooth motion under unanticipated events.

Recently, a community proposed to solve robot planning
in human workspaces as a multi-agent joint-dynamics learn-
ing problem, and uses motion models learned from crowd



data as the robot planner, as if it was one of the crowd
members [4] [10] [17] [18]. This method has been shown
to outperform traditional motion planning approaches by
producing smooth human-emulating trajectories. One major
drawback, however, is that the predicted interaction, learned
from human crowds, do not well represent human behavior
when responding to a robot. The planner is then ineffective
in scenarios where human exhibits rarely seen behaviors in
interaction with another human, when they are around robots
[17] [8] [9]. Learning-based methods also have limited
capability to apply for task-dependent robot objectives, e.g.
being urgent or just wandering around casually, which the
planning-based formulation can achieve.

Incorporating human prediction for robot planning has
mostly been formulated in single-agent settings, which fail
to capture the co-dependency in interactions [19] [3]. To
deal with the uncertainty in prediction, stochastic dynamic
program has been applied to deal with noisy human be-
haviors [16]. For interactive agent designs in video games,
human actions are considered in the multi-agent MDP model
to simulate multi-agent planning performance [20] [21],
where the AI agent’s current actions are assumed known
by the humans to simulate their policies. This “omniscient”
setting follows the turn-taking game formulation, instead of
a simultaneous-action model as in real-world interactions.

In Game Theory, Stochastic Games were proposed to
model dependent outcomes among multiple players, and have
been used to generate human-like interactive motions [22].
Following the formulation, Markov Games were proposed
for multi-agent reinforcement learning [23], to study the
interactions among learning agents, for example, how one
agent’s learning affects the final outcome of the others and
how they should learn accordingly [24].

III. PROBLEM STATEMENT

We first define the problem to apply traditional motion
planning for robot navigation in human workspaces.

A. Dynamic Environment Dilemma

We define the robot’s state x; in the state space X, and its
action g, in the action space A. The collision-free workspace,
a subset of the overall workspace, Wr,. C W, is defined
as the feasibly reachable space given robot kinematics. The
motion planning formulation is to minimize the accumulated
travel cost C;, while ensuring robot’s final state x7 ends in
the specified goal set X G Weree. Gt is a function of the
state-action pair: Cost(x;,a; ). A negative terminal state cost is
assigned: Costio—go(x7) < 0,Vx7 € X G, to encourage arrival
in X¢. To ensure safety, transitions out of free space Weree
are assigned with high cost: Cost (x;,a;) = o0, Vx; & Wysee. The
sequential optimization formulation is as follows:

S argrtllliTnE,TCost(xl, a;) + Costro—go(x1), W
1
st X1 = T (x,a0), Ve

where .7 is the state transition function. The sequence of
a variable v from ¢ to T is denoted by v;.r. This common
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(a) The robot platform passing pedestrians, used in this research

Fig. 1.
to collect human responses. (b) The problem of robot inconsistent paths,
replanned over time (marked by dash red lines). The resultant motion (solid
blue curve) was considered incompetent in the social navigation literature.
(c) The paths generated by our approach, capable of incorporating future
pedestrian motion for planning under specified objectives.

motion planning formulation follows the MDP setting, and
its solution is later refer to as the single-agent optimal policy.

The above formulation relies on the assumption that ob-
jects in the robot’s environment are static. However, when
encountering dynamic objects, Wy, changes over time. With
Wpree being time-variant, Cost also becomes time-variant.
The optimal sequence aj.; solved at time ¢ then may not
be valid at future time instances, as illustrated in Fig. 1-(b).

With online replanning, inconsistent motions are produced,
leading to inefficient and even awkward behaviors for hu-
mans to interact with [13] [3]. To ensure collision safety,
overly-conservative behavior arises, due to the inability to
incorporate future variations into the cost formulation. We
refer to the situation as the dynamic environment dilemma.
To resolve this, we re-formulate the planning problem using a
game setting, which restores the validity of the static environ-
ment assumptions by formulating the simultaneous actions
of other agents and their state into the cost formulation.

B. Planning with Stochastic Games

In Stochastic Games, N agents act at a time ¢. The joint-
action a; = (a!,a?,...,a) € A is defined in the joint action
spaces of all agents A =A! x A%... x AN. The joint-state x; =
(x},x2,...,xN) € X is defined in the joint state space of all
agents X = X! x X2... x XV. The state transition function
T X x A — X affects agent reward (inverse of Cost ) over
time. Time is discretized by the interval of df, and game
periods are defined as follows. At the start of each period
t, each agent selects an action aﬁ,i = 1: N and executes it
continuously for dt; the transition function .7 takes in the
current state x; and determines (probablistically) the state
at the beginning of the next period #+ 1. The game starts
at the initial period ¢ = 0 and terminates at the final period
t =T, which is a dynamic parameter we will define later
based on interaction history. The lookahead H, how long the
plan is concerned with, is selected based on the affordable
computational resources.

The reward r! € R of an agent i at time ¢ is based on
its reward function r': v} = r’(x;,al,a;'), where a;" denotes
actions of all other agents except agent i. This formulation
incorporates x;, the time-variant states of all agents; it brings
out the notion of planning while considering the effects of
the simultaneous actions of other agents, which resolves the
dynamic workspace issue.



We then solve for the optimal action sequence, given other
agents executing their policies 77'. The optimal state value
function of agent i’s optimal policy, V/I™ ', is defined as:

VI ) = maxE e [0 g @)

where Q% ", the optimal state-action value of agent i given
', is defined recursively, similar to the Bellman’s Equation,
solvable through dynamic programming:

Qi‘ﬂil (xf) = ma,lXE 7i~7t’i(Xt) [ri(xtaafvat_i) + VWF’ (th)].
a

3)

t
The optimal action of agent i at time ¢ is therefore,
Cl;* = argrn?XEut’iwn*i(x,)[Ql‘n7 (xlaaivat_l)]v 4
a

which is defined in the joint state space X, and it depends
on agent i’s estimate of other agents’ policies 7"

C. Planning Problem in Real World

Despite the benefits of using stochastic games to solve for
the “optimal” plan, accurate modeling of human behavior
for 7~ remains ongoing research. Prediction error not only
yields inefficient performance but also collision risks during
real-world deployment, for the robot had to constantly slow
down to resolve unanticipated collision threats [9][8].

1) Collision Prevention under Prediction Error: To ad-
dress the safety concern induced by prediction error, in
the literature, worst-case predictions have been commonly
applied to prevent events of high costs [25]. Within the multi-
agent formulation, it is then to be concerned with adversarial
others for prediction:

T-1
ag.y = argmaxminEy [ Y r'(x,ap,a,) + O (xr,af, ar')]-
a:):T aO:’T =0

&)
This method addresses worst-case performance, such as to
safely maneuver from people who intentionally block the
robot. The behavior assumption however leads to overly
conservative decisions preventing the robot from engaging in
any risk, e.g., to slow down early or navigate far away when
encountering crowds, which leads to inefficiency. We there-
fore contribute a robust planning algorithm to improve the
efficiency while maintaining safety, detailed in Section. IV.
2) Validation under Modeling Error: In addition to data
insufficiency, people exhibit individual differences in their
responses to the robot, which contribute to prediction inaccu-
racy that is hard to prevent. We therefore conduct field study,
detailed in Sec.V, and propose various pedestrian models for
performance validation under partial model knowledge.

IV. METHODOLOGY

We propose to improve the performance of maximin
planners as in Eq. 5, first by considering collision avoidance
as a finite-period game which ends at the time when collision
threat is resolved, and second by planning with worst-case
prediction only in the final period, which is the critical timing
to prevent collision. We then introduce our proposed search

algorithm to plan in stochastic games with final-period worst-
case prediction, and the real-time computation.

A. Robust Planning with Final-period Worst-case Prediction

When agents coordinate for collision avoidance, they
adjust motions early, as such (history of) actions affect the
value of the final passing. After collision threat is resolved
at time 7, which we define as when two agents’ individual
single-agent optimal policies no longer lower the plan values
of each other, the game terminates. The game also early
terminates if collision occurs, in which case, large penalty is
assigned.

To guarantee safety, the robot needs to consider worst-
case scenarios up to time 7 when calculating the cumulative
rewards and final-period coordination value QiT:

T—1
ag.y = argmaxminEy [ Y r'(x,a7,a,) + O (xr,af,az')]-
aE):T aO:’T =0

(6)
T is dynamically updated given online observation. With
each agent —i, individual 7 value is calculated; depending
on action history of agent i and —i, T can vary. We here

denote QF., instead of Q#ﬂ l, since we expect no interaction
after the final period !.

Moreover, we propose that the worst-case prediction is
not needed until reaching critical states, in which actions can

have unrecoverably great impacts on the optimal value V,"” B
For example, entering a narrow hallway with possible dead
end, with a vehicle that cannot do reverse driving, can prevent
the robot from completing its task. While such critical state
can be intractable to compute in general problem settings, in
collision coordination (despite that actions in every period
affect the optimal value), it is only until the final period
can actions evoke the large collision penalty that the planner
seeks to prevent.

Therefore, to ensure safety, the robot only needs to account
for worst-case prediction and the associated action value,
until immediate collision (under the worst-case prediction) is
detected, which is at the final period of the searched branch.
The planner then can still use a nominal prediction model
n~! for reward estimate for t =0: T — I:
aE)fT = arg[niaXEaaiT,x&ﬂn*/[ Z rl(xlva;7at_l)] +m}ln Ql(xTvalT7a;l)'

o ’ =0 ar
N
We refer to this behavior as safe yet not overly conservative,
and the strategy as planning carefully only when it matters.

B. Planning on Stochastic Games with Safety Guarantees

To find the optimal solution, we consider tree search to
apply forward simulation/state transitions of robot dynamics
with non-holonomic constraints. A tree starts with a root
node x;, and it expands by forward simulating the state-action
pair (possibly through a stochastic function) x;41 ~ 7 (x;,a; ),
and a reward r; = r(x;,a,) is received. An illustration of a

I'This assumption holds among goal-oriented agents, but does not hold
among adversarial agents, for whom longer periods have to be concerned.
We do not consider adversarial agents here.



Fig. 2. Comparison between single-agent MDPs (Top-Left) and stochastic
games (Top-Right). A tree with all-agent simulation expands its node x;
(Bottom-Left) with choice of actions (here, a;' or a;”) to the children nodes
(here, x;, | or x;). Since actions of other agents a, ' are unknown, to
expand from a node x;, the state transition function .7 needs to sample (K)
potential actions of other agents @, ' (4, ;,k = 1..K), to estimate the reward
# after taking action a! and arriving at the next state £, (Bottom-Right).

graphical model of single-agent MDP is shown in Fig. 2:
Top-Left. When planning in Stochastic Games, both the
reward function r(x,,al,a;’) and the transition function
T (x;,d},a;") involve other agents’ actions a; ", which may
be highly probabilistic and are not available until observed at
t+1 (Fig. 2: Top-Right). Therefore, we sample their potential
actions for reward estimate 7/ and state transition (Fig. 2:
Bottom-Right, to expand the tree with all-agent rollout
(Fig. 2: Bottom-Left).

1) Nominal prediction: Each node contains the state of
agent i, xﬁ, and its action, ai. For action selection, af €Al
are sampled (shown in Fig. 2:Bottom-Left). Each node also
contains K sets of sampled states and actions for each agent
—i, as the belief states and belief actions, to account for
prediction uncertainty of x, ' and a, . The belief actions at
time ¢, a;,;k = 1..K, can be sampled from models that are
Markovian [5], or history-dependent [9]. The reward rf is
then estimated through the unweighted sample averages,

Al 1 & I al
Fr= Y r (kapagy). ®)
K3 '

The state transition x;y is estimated by K sets of samples,
Xtk = 9([xf,x;,§],[af,a;,£]). In practice, the choice of K
should be domain dependent, e.g., maximum likelihood
prediction showed success in some navigation domains [26].

The approach is related to sequential importance sampling
and Partially Observable Monte Carlo Planning [27], a
POMDP planner which samples observations (here, the belief
actions) to maintain belief states, but without the pruning
step. We omit this belief update step, for the clarity of
demonstrating the the ability to address the modeling error
issue. While this step could potentially improve prediction
accuracy on-the-fly and therefore plan quality, we consider
it as future extension but do not detail here.

Replanning is initiated each time a new observation 0,4
is received, and a new search tree is started. The planner
computation depends on the agent number N, number of
sampled actions K per agent, sampled robot actions |A|, and
search depth H , with the complexity (|A/| +NK)|A|H~! for
node expansion. Sampling |A?| actions per agent —i along

with sampling a! € A’ can have complexity (N|A~||AI|)H;
here we maintain fixed number of samples for state transition
x:M; k- to prevent it from growing exponentially in H. We
here do not consider further reduction to make sure all node
expansions have joint state transitions, for collision check
in future periods. If collision threat is detected as resolved,
single-agent policy can be restored. Such implementation
should be delayed in case that T estimate is noisy.

Here we use heuristics to guide the search; other action
selection mechanism can be used, e.g., UCT in MCTS [28].

2) Worst-case prediction: Collisions are checked under
the condition that the distance between two agents is within
0.8 m and the robot’s velocity is greater than 0.3 m/s.
This condition applies for both planning and execution time
for validation. We chose to apply a safety speed (0.3 m/s)
instead of full stop, since people are very capable of avoiding
low-speed objects. Full stop was also suggested as unnatural
in human crowds [4].

We detect collision by solving for the minimum pedestrian
velocity change to induce collisions with sampled robot
motion, checking if the velocity change is within a predefined
value: v, human maximum speed change from nominal
speed. We here apply v, = 0.7m/sz, which can be online
adjusted. v, can apply a larger value for conservative detec-
tion. The approach is similar to velocity obstacles [14]; other
collision detection programs can be used [7] [8] [9] [17].

As here we want to ensure safety, nodes with potential
collision detected can be directly removed from the tree. For
computational efficiency, before node expansion, one should
first apply worst-case prediction and directly abandon the
node if potential collision is detected.

3) Algorithm: our robust planning technique can be seen
in Algorithm 1. It begins with initializing state x!, belief
state samples x, 1’ x> root node b, the search queue gSet,
and the heuristic function for cost-to-go estimate yil=ix
(Line: 1). Nodes are composed of a state xf, belief state
samples x, |, action a!, and belief actions a, i, as shown in
Fig. 2:Bottom-Left. The algorithm then enters a loop, which
repeats the search and node expansion until gSet is empty or
until time is out (Line: 2-19). The optimal action sequence
is returned as the history actions to reach the final searched
node b; (Line: 20-21). The ActionHistory function takes in
b, and the index of action(s) to retrieve: af is indexed 0, and
agent —i’s sampled actions a, 1’ x are indexed 1 to K.

Within the repeat loop, a node is first selected (Line: 3-
4). Entering the first for-loop (Line: 5-8), belief actions
are sampled using 7/, represented as a history-dependent
function (Line: 6). Then agent —i’s state transition is applied
(Line: 7). Entering the second for-loop with robot action
sampled a! € A’ (Line: 9-18), collision is first checked by
a Worst-casePredict function (Line: 10), which returns True
if collision is detected (Line: 11-13), it continues with the
next sampled action a! € A’ for collision check. If no collision
is detected given a!, state transition is applied (Line: 14) for
node expansion (Line: 15-16). The accumulated reward till
the expanded node b, is updated with unweighted sample
averages as in Eq. 8 (Line: 17).



Algorithm 1 Multi-agent Tree Search with Safety Guarantees

1: Initialize: state x/, belief state samples X, l’ K
state transition function 77, 7~
root node by < ([x},x,|.,][ ]), search queue gSer < b;
reward function r o
accumulated reward g(b;) 0, heuristic function VI~
2: repeat o
3: b +NodeSelect(gSet,g,V/I=)
4: update xé,x;f{ based on those in b
5. for k from 1 to K do
6 a;é ~ n*’([x;ixtflé']\ AgtionHistory(b,, [0:K]))
7 x;’l"k — 9"(){]2,51:,2)
8

end for ) )
9:  for sampled a; € A’ do )
10: Collide <—W0rst—casePredict(xf7xt_ L al, A7h
11: if Collide then ’
12: continue
13: end if o
14: X T(xg,a) ‘
15: byy1 <[x;+l7xt_4i1,l:l(]7[a;7at_,ll:K]>
16: gSet.append(b;41) o
17: 8(byy1) < glby) + %Zler(x;,x;,i,ai,a;,i)
18: end for

19: until gSet == empty or TimeOut()
20: ag.,_, +ActionHistory(b,,0)
21: return ap,

C. Implementation

1) Search: we apply A" in the tree structure, and Eu-
clidean distance as the admissible heuristic estimate for all
agents (without collision detection). With A*, the NodeSelect
function in Line 3 outputs node b, based on g+ V%, and
removes b, from gSet afterwards. The planner runs till time
budget is out or certain lookahead H is reached, and replans
online at each period, in a receding-horizon fashion.

2) Action Sampling: we sample actions at nominal speed
with constant angular velocity of [-30, 30] deg/s to encour-
age path exploration, and safety action a; at the same angular
range at safety speed (0.3m/s). We also sample human-like
yielding motions [29]. When within 3.5 s before arriving
at path intersection, we also sample slightly-accelerating
motions using Sth-order polynomials, which were shown to
yield intent-expressive avoidant motion [30]. Other motion
primitives can apply accounting for dynamical constraints.
Here we consider a; from a motion planning perspective,
and omit the discussion on other implementations of a; for
dynamically challenging platforms.

3) Real-time Computation: We consider |A'| =5 during
nominal operation, |Ai | = 8 during collision coordination,
H =4, and keep the worst-case complexity under 1000 nodes
of expansion. The time duration of each period is 1 sec,
which ensures the robot can cover 4-sec prediction, reacting
to collisions at least 3 s ahead of time. Humans usually react
to collision threats 2.5s ahead on average [31].

D. Performance Implication

When collision is detected at b7 under worst-case predic-
tion, the coordination with sampled a; corresponds in both
agents “dare” in a Chicken game. Infinite penalty is then

received, for which we directly abandon b7 for plan output.
The robot therefore will only produce actions from branches
that do not detect collision threat (at b7); they may contribute
lengthy trajectories due to early adjustment, and may contain
a, in its action sequence. Since nominal behavior prediction
is applied elsewhere, worst-case evaluation for plan selection,
e.g., for both agents to take a; (to yield) which induces
long accumulated delay, is not concerned in our planner,
improving the conservativeness in Eq. 5.

Example robot trajectories are illustrated (based on real
outputs) in Fig. 1-(c). Robot altruistic/collaborative/aggres-
sive behaviors are shown, given reward function: mostly
on others/ evenly on all agents/ mostly on the robot. The
altruistic (Left) always waits until the pedestrian passes. The
aggressive (Right) has high travel efficiency by reaching the
farthest. The cooperative (Middle) less hinders the pedes-
trian. Despite different values were reached, coordination
was successful (without collision) among the three cases.

V. HUMAN BEHAVIOR MODELING

To simulate crowd dynamics, homogeneous models were
proposed in agent-based modeling, where individuals share
the same multi-agent policy to interact with one an-
other [5] [32]. Here we use Social Force Model with Col-
lision Prediction (SF-CP) [29], which generates pedestrian
coordinating motions based their crossing-point arrival tim-
ing estimate. The one with later timing generates yielding
motion, whereas the other generates passing-in-front motion.

For those models, all agents share the same objective and
it is of common knowledge (all agents know they share an
objective and they know others know that and so on). It is
as if one agent has full control of the others, to optimize that
agent’s objective (maximizing all agents’ rewards):

T—1
ag?T = argmaxma.XEXO:T[Z rl(xl‘ﬂaivatﬂ) +QIT(XT7alT7a;)]'
aé):T a(;’] t=0

(€))
Here agent i is collaborative and assumes others to also be
collaborative; we refer to it as the reciprocal behavior.

In the real world, as observed that humans interact with
robots much differently from that with humans [9][8], to
build realistic behavior models, under exempt IRB approval,
we deployed a robot in a public atrium, to observe pedestrian
responses in an uncontrolled setting. We observed some
pedestrians to exhibit the reciprocal behavior.

Some people avoided carefully, far from the robot. We
refer to these people as being cautious, and simulate their
motions by planning for the worst case, as in Eq. 6. Some
people appeared the opposite, exhibited non-yielding behav-
ior and passed in front of the robot closely. We refer to such
behavior as being aggressive, and simulate such behavior by
applying a self-centered objective on Eq. 9, imposing the
assumption that the other party —i compliantly maximizes
i’s self reward. To simulate human-like motions, we apply
the coordinating strategies (to dare or to yield) solved by the
above to SF-CP, and simulate to-yield motions by inputting
reduced agent speed, such that its arrival timing is later than
the other. The opposite is applied to simulate to-dare motions.



VI. VALIDATION

We first validate the performance of our approach when
encountering the three types of pedestrian models, intro-
duced in Section. V: the aggressive, cautious, and reciprocal
models. We report the impact of modeling errors on the
coordination interaction and quality, in a two-agent path
crossing setting. We then report the performance compared
to baselines under a 4-agent crossing setting with randomly
sampled pedestrian types. Initial locations are randomly
sampled with all (2 or 4) agents’ arriving timings within
the range of [-1,1] s difference, to simulate convoluted
coordination processes. We conducted 100 trials in the 2-
agent test and 20 trials in the 4-agent test. Pedestrians
are simulated at 1.0 m/s, with the robot at 0.8 m/s as
their nominal speeds. We evaluate the performance under
the reciprocal assumption, running the reciprocal pedestrian
model for all planner prediction.

Metrics: we consider counts of collisions as the safety
metric, and counts of trials with the robot executing a, as an
indication of unsmooth avoidance. We also show counts of
trials with a; in the plan at # =0, as an indication of, first,
how difficult the crossing is (to navigate around smoothly)
among test scenarios, and second, how conservative the
prediction is among different planners. —V7 is calculated as
time delay at t =7 compared to a straight-to-goal planner,
as the inverse metric for path efficiency.

I) The 2-agent test result in Table I: with 32% predicted
ag at t =0, the planner sometimes predicts the path conflicts
cannot be resolved without a; (with good —Vr), which
is a bit higher than the actual number of trials with ag
execution, due to the last-horizon worst-case prediction. Due
to prediction error, with aggressive and cautious agents, more
a, are executed at t = T' (74 and 30) than that with reciprocal
agents (21): the aggressive pedestrian may insist on passing
in front when it is predicted to yield; the cautious pedestrian
may slow down to yield while predicted to pass in front of
the robot. Similar trends are reported in —Vr. This result
supports the observation in prior work that performance
evaluated through crowd model [4] [10] may not reproduce
but degrade in the wild [9] [8]. Our planner had zero collision
with any of the three types of pedestrians.

II) The 4-agent test result in Table II: we consider two
baselines here, both with safety guarantees:

1. Maximin-baseline: the conservative planner using Eq. 6,
which always predicts the worst case.

2. Safety-check reciprocal baseline: equipped with 1-
period worst-case collision-detection at execution time (and
executes a; if detected), it is the optimal planner based
on Eq. 4, using the reciprocal model for prediction. This
planner’s behavior resembles that of the human-mimicking
(learning [4], [10] and planning [22]) approaches, by using

Collision  Predicted a;,  Executed ay -Vr
Aggressive 0 32% 74% 1.60 (£ 091) s
Cautious 0 32% 30% 1.09 (£ 1.1D) s
Reciprocal 0 32% 21% 0.66 (£ 0.55) s

TABLE I. Our planner evaluated under three types of pedestrian models.

Predicted a;  Executed ay —Vr
Maximin-baseline 100% 100% 495 (£ 0.74) s
Safety-check-baseline 30% 100% 3.35(+ 0.68) s
Our planner 85% 100% 3.22 (+ 0.60) s

TABLE II. Performance comparison in the 4-agent crossing scenario.

the nominal model for both prediction and motion generation
and using a collision detector for safety [9], [8], [16].

This coordination scenario is more difficult than the 2-
agent setting, as more predicted a; are reported by our
planner at t=0 (85%). The Maximin-baseline predicted and
executed ag in all trials: it started to execute a; at early
timings, leading to least efficiency with the overly conserva-
tive prediction (-4.95s). The Safety-check-baseline predicted
the fewest ay: it went straight towards the goal, expecting
others to slow down when supposed to (according to the
reciprocal model prediction), yet had to constantly execute
as due to prediction error. Our planner avoided dangerous
states through the worst-case collision-detection, therefore
experienced less delay in situations where aggressive agents
force their ways to pass in front or cautious agents slow down
when they are supposed to pass first. Due to the worst-case
prediction, when interaction with the reciprocal agents, our
planner can be less efficient than the Safety-check baseline.

In terms of “unanticipated” safety maneuvers, which can
cause extra travel delay and degrade motion smoothness
during real-time execution, our planner, compared to the
Safety-check-baseline, improves 55 % of such maneuvers.
All planners had 0 collision in all trials, whereas the optimal
planner (using Eq. 4 without safety check) would experience
collision in 70 % of the trials.

1II) Discussion: as observed in the two tests, modeling
error contributes greatly to —Vr; to improve travel efficiency,
online prediction refinement, either as an add-on to existing
planners, or incorporated (into our planner) as belief update,
can be expected, e.g., to identify pedestrian types [33]. Here
our suggested evaluation procedure accounts for unantici-
pated events, by simulating unmodeled behaviors, to address
the concerns from real-world deployments [17] [9] [8].

VII. CONCLUSION

We contributed an algorithm for safe robot planning in
human workspaces, and demonstrated its ability to prevent
collision when coordinating with multiple other pedestrians
under partial model knowledge. The approach was formu-
lated using stochastic games, which resolved the dynamic
environment dilemma in the motion planning literature. The
proposed technique applies maximin operation only at end
nodes of the search for collision prevention, which was
shown to save 35% of travel delay, compared to the maximin
baseline. The planner also saved 55% of unanticipated slow-
down counts, compared to a naive reciprocal baseline. As
modeling error remains unresolved for robot planning in
human workspaces, the proposed approach and validation
help ensure more smooth and safe robot deployment. Further
inference, learning, and adaption online can be considered.
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