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Abstract— Service robots are gaining capabilities to be de-
ployed in public environments for human assistance. While
robot actively providing guidance has shown great success
in field study, the communication strategy (the strategy to
decide whom to initiate the service for and when), and hence
the performance evaluation, has been based on behavioral-
based qualitative analysis. We attribute this to the challenge
of accessing large-scale field data with condition control, and
approach the problem with simulation from the agent-based
modeling literature, to simulate pedestrian behavior in unfa-
miliar environments and estimate travel cost. We contribute a
planning approach that uses the pedestrian behavior prediction
from the model, to decide whom to initiate guidance and
when for performance maximization. The results suggest that
our approach is more efficient based on the measure of
saved pedestrian travel time, compared to the behavioral-based
strategy and a baseline that maximizes service counts.

I. INTRODUCTION

For robots in the field to successfully initiate interaction
with humans, social context awareness has been widely
studied to improve the success rate, e.g., not to disturb goal-
oriented pedestrians [1] and not to talk about other shops
in front of a potentially competing shop [2]. For guidance
service, from the identification of potential subjects [3][4],
proper initiative motions to approach [5][6] and to the com-
munication process [7][4], past research showed increasing
success for robots to initiate guidance in public areas, with
positive subjective evaluation of service quality [3].

However, quantitative measurement of robot service qual-
ity is relatively less addressed, especially in an objective
manner. Such measurement is important for robot capacity
management, and is also important for the service provider
(robot) to calculate “service value” - the underlying value
of each service to the service customer (human). Since
there is a cost for each service providing process (time to
communicate for goal clarification and activity invite, and
task interruption) that is at both service provider and service
customer’s expense, if the service provider is able to make
the decision to initiate service only when the calculated
service value is worth the cost, the overall service quality
can be improved. Furthermore, for guidance service, since
neither the customer’s destination nor her knowledge of the
environment is publicly known, the calculated service value
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Fig. 1: The robot evaluates pedestrian potential routes (marked in
dashed lines) and destinations to decide if it should initiate guidance
service. As it knows that the group session (upper-left) is under
restricted access and the configuration is complex to search around,
an (indecisive) pedestrian reaching to the left has high probability
(in dark gray) spending long time not finding her destination. If
she reaches to the right, the expected search time is short; with low
probability (in light gray) she will need to search another area.

may be highly inaccurate. A decision to initiate guidance
may soon be found less valuable once the customer turns
and finds her destination at the nearest site, as shown in
Fig. 1.

In this work, we propose 1) to utilize the agent-based
simulation literature to sample pedestrian travel behaviors for
performance evaluation, and contribute 2) a method that uses
the agent-based model for cost-performance estimation, to
generate domain-structure aware communication strategies,
to decide if to initiate service or to collect more observations.
To afford the computation for long-horizon prediction, the
contributed algorithm decouples the prediction and action
selection process, to make the search complexity polynomial
in agent number and horizon length, and then iteratively
improves plan quality.

The validation simulates continual pedestrian flows in real-
world collected maps. We also consider a cost for task
switching, e.g., to interrupt public-area sanitizing and resume
with calibration to continue, for performance validation in
coordination with other tasks. We show superior performance
in improved pedestrian travel efficiency while initiating less
number of guidance service and therefore more undeployed
time for other task capacity, compared to baseline strategies
in initiative guidance and intent communication.



II. RELATED WORK

Communication plays an essential role in interaction.
Utterance, in combination with other communication chan-
nels, e.g., gesture, has been widely studied to produce
socially competent robot behaviors to interact with hu-
mans [8][9][10]. Technical advances in dialog systems,
e.g., online clarification strategies to deal with noisy in-
puts [11][12] and knowledge groundings [13][14], facilitate
smooth verbal communication.

Guidance, as a service that robots supply, requires the
ability to provide human-understandable instruction, e.g.,
through landmarks and local directions [9][15]. To initiate
interaction, robot behaviors that reveal the intent have been
proposed, through approaching motions [16][17], adjusting
relative orientations [18], and eye contacts [3]. Initiative
guidance to pedestrians with “indecisive” behavior features,
which are learnt from field data, showed high success
rate [4]; such service was also suggested in field study as
useful and preferable in shopping malls [7][3].

As a communication task, to provide information that
complements the travelers’ knowledge of the environment,
guidance is expected to improve travelers’ efficiency, by
means of communicative actions. While guidance service
received positive subjective evaluation, due to the difficulty
to conduct objective measures and condition control in field
study, performance analysis is relatively less addressed. Such
analysis is however crucial for robot task management, as
robots increasingly gain capabilities, to evaluate the task-
switching trade-off based on the expected outcome. While
prior literature focused the guidance robots on guidance
task, either prepared the robot as always available [18],
or to initiate service to whoever appears indecisive and
closest [16][3], such strategy is validated in this work as
inefficient to robot capacity usage and ineffective in its
assistance to travellers, in terms of their travel efficiency.

From the perspective of task performance, what to com-
municate, when, and how, have been formulated as a se-
quential optimization process in the human-robot teamwork
literature [19][20], which is suitable for guidance and service
scheduling applications. We build upon such multi-agent
planning formulation, and propose our solutions to deal
with long-horizon pedestrian trajectory prediction and partial
observability in the initiative service setting.

IIT. PROBLEM FORMULATION

For interactions to take place in the wild, there are a few
prerequisites. The initiation process requires attention and
can be time- and effort-consuming. A joint activity, 6.,
parametrized by task specifications including the objective
and constraints, is defined when agents under their individual
objectives can act and affect the (foreseeable) future values of
others’ actions. The awareness of potential joint activity with
others is needed and to be grounded, such that the engaged
agents coordinate and expect others to coordinate. Awareness
grounding can be completed by simply ensuring mutual
awareness, e.g., through eye contact to avoid collision, or
may require more steps, to confirm about each agent’s own

objective, the joint activity (among multiple options 0, €
O;nt), and the subtasks accordingly.

Depending on the individual objective and potential sub-
tasks, preparative behaviors to initiate interaction were pro-
posed in the human-robot interaction literature, e.g., to
actively acquire attention [16], signal availability [2], and
prepare for future coordinating actions [6], and they are at
the expense of the robot’s own ongoing task progress; we
denote such cost as Ci]:”m’ p» and the cost of joint activity
grounding among both human and robot as Clanf J-

A. Expected Deployment Value

To manage the robot’s capacity to effectively provide
service, we consider the overall initiation cost, denoted as
Cinit» as a soft constraint, Cyi¢ (2, 2 af alf) < Cprax,
for the robot to coordinate its tasks in the queue (in a
preference-based manner), while maximizing the expected
performance to the service customer,
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its action value VEITine given human policy, conditioned
on the joint activity 6,,,. Taking into account the initiative
cost Cype, joint performance may or may not outperform
the single-agent policy; to initiate or not then depends on
the value function, which is domain-structure dependent and
service-activity dependent.

For guidance service initiation, ¢;,; specifies the human
subject’s objective #¥: to guide towards her destination
(unknown to the robot) following an efficient route. The
robot’s subtask is to provide such route information, and
the value to provide such information depends on the sub-
ject’s prior domain knowledge, e.g., their cognitive map and
its annotation. We denote such partial knowledge as their
belief b2, which guides their route to either explore or
exploit: afl ~ 7 (zH b |6H). bH evolves over time as
information is collected, e.g. through map exploration and
explicit instructions, bt ; ~ f(bf,af’). As bf transits and
contains sufficient route information for 67, 7 is modeled
to efficiently navigate to the destination. The resultant value
V™" of self exploration determines the benefit to initiate
guidance, which we denote as VR‘”H:
™ b1 1011)):
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B. Expected Observations and their Impact on Decisions
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To provide service that is effective, as described above,
we evaluate service value considering potential joint activity
specifications, and compare to the performance of the single-
agent policy to decide if to initiate service. Intuitively, with
more observations, the more accurately the robot can identify
customer private states and evaluate its service value, to



prevent inefficiency caused by uncertainty, e.g. to deploy
to provide guidance but later realize the subject is head-
ing for the most close-by destination. We therefore further
incorporate observations along with the robot’s sequential
action evaluation, to plan for initiation taking into account
the impact of potential observations op; € O up to a
certain time ¢. The policy is then conditioned on the potential
future observations and the value is evaluated conditioned on
those observations. Given time ¢ > 0, it is then to decide
if pending for more observations og.; € O yields better
expected performance to the observation-conditioned policy,
deciding whether to initiate, and when:
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By comparing VtR‘Tr over time ¢ > 0, the robot then decides
if to defer the initiation decision to a future time t. We later
. . R|7TH
denote this policy as 7-V;

C. Hidden Parameters, Observability, Expected Performance

In guidance service, 6y and bfl influence human behaviors
and therefore service value, we are then concerned with the
inference and observability of 6y and bH and to solve
for Eq.3. The robot may partially observe 6z and bl
through human behavioral patterns, e.g., waiting at a corner,
wandering around, or going straight to a direction. Here we
consider the pedestrian’s navigation state as the source of
observations to infer 0y € Oy and bf € BH which we
truncate as Hﬁide’t € Oy x B, As we assume z/ transition
to be markovian, we maintain robot belief bf* over 017, ,
and update through Bayes’ rule: '
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where 7 is a normalizing constant. fy is assumed time-
invariant; b/ is updated throughout z/’ transition over
time and incorporated as: 01", = g(0f . xf af").
zfl = T(zf,al") follows a first-order motion model.

Per Eq. 3, the expected observability to the hidden param-
eters affects the robot’s decision: if to initiate service to one
customer now, and to decide later. Consider a robot serving
in a one-way one-outlet corridor, past which all pedestrians
reach their later-on destinations. The observability of the
pedestrian’s goal and route certainty is limited in this case.
Passive observations are then not informative, and therefore
Eq. 3 would perform similarly to Eq. 2. Such decision is
then not only dependent on how strong the state detector 2
is, but also on the domain structure.

In summary, we evaluate the expected decision qual-
ity V;R‘Tr over Giid&t, conditioning on potential future
observations. The robot therefore may defer its decision
on whether to initiate, if decision quality improvement is
expected, VtR‘ﬂH > VOR‘TFH. This is of common practice
in human interaction, e.g., a stadium receptionist initiates

help after a person went past common facilities yet still
appeared searching. Yet, the marginal value to provide ser-
vice decreases as initiation timing is delayed. The robot is
then to assess the trade-off bwtween preparation overhead
Cf;‘it’ p» interaction joint cost Cﬁﬁ 7> and expected service
value. The higher C},, » and C/IT ; are, e.g., with its task
queue tightly scheduled and complex domain knowledge to
clarify before providing service, the robot more tend towards

waiting until service appears critical to initiate.

IV. METHODOLOGY

Here we first detail 7%, our choice of model for V”H eval-
uation, and function g of pedestrian belief transition during
their exploration. We then detail our planning technique and
action space to solve for Eq. 3.

A. Modeling: Human Exploratory Navigation

In the literature of cognitive psychology, Gibson’s ecolog-
ical theory of perception was formulated to model an agent
conjoined with its environment; by the contents perceived, an
agent uses the affordances to guide its action, here our 7.
Natural vision was proposed to characterize pedestrian visual
factor affecting behaviors, moving in a direction that provides
the potential of further movement: “we look around” and
“walk up to something of interest” [21].

1) Isovist: The idea of isovist was introduced in ar-
chitecture to calculate viewable areas at a location, and
was further applied in ecological psychology, in assessment
of walkable surface that agffords movements. The theory
of natural movement [22] suggested that the majority of
pedestrian movements occur along lines of sight, and the
more a line of sight is connected with others, the more
movement exists along. Turner et.al applied the concept of
natural movement in agent-base modeling [23], and simu-
lated exploratory pedestrian motions based on the isovist; the
farther the pedestrian can see along a perceivable direction,
computed based on range of view and current walking
direction, the higher probability she will be guided, visually,
to move towards.

2) Search-based  exploratory  behavior:  Pedestrian
wayfinding in unfamiliar environments was also studied
for disaster simulation. Search heuristics and information
from the environment, e.g. signs and information boards,
were incorporated for strategic wayfinding [24], [25], [26].
As for the times when no clear direction information is
available, people explore the environment. Here we consider
such situation and model the search process as if s/he
has to follow the biological instinct of walking during
the exploration. During the process they search for their
destination, at the same time for potential visual attraction,
if not for urgent purposes. We refer to such performance as
search-based exploratory behavior, and target this behavior
for robot guidance service initiation.

We follow the design in Turner et.al. to simulate search-
based exploratory behavior: a pedestrian’s visible range is
applied to cover 170 degree wide along their walking direc-
tion; each step takes the duration of 0.5s, with a probability to
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Fig. 2: [Top-left] The graphical model of the multi-agent decision
making formulation, to plan with partial observability to human
hidden parameters. [Bottom-left] The full search tree, v.s. [Right]
the sparse and decoupled tree, separating robot actions from human
actions, for robot action search and iterated evaluation.

change walking direction following the Poisson distribution
Poisson()), A = %, validated in a gallery tour dataset. If
to change walking direction, a new direction is sampled,
with the probability proportional to the viewable surface area
along that direction. Example trajectories are shown in Fig. 3,
marked in solid lines from designated entrances to goals. The
path colors fade over time.

3) Pedestrian belief transition: The cognitive map of a
pedestrian in construction of routes in the perceived envi-
ronment is of active research [27], [28]. Here we apply the
belief representation b7 upon a map-labeling mechanism,
to model cognitive map construction in unfamiliar environ-
ments. Through the computation of isovist and visible angle,
a distance of 5m is applied as the range of survey and la-
beling. Upon the assumption that labeled/surveyed sub-areas
as well as their spatial connections were constructed along
the process, we assume an agent to know their route once
labels containing their destination and subgoals (from current
location) are available. We therefore implement wayfinding
as a map labeling process; route is found once the destination
is labeled either through self exploration or robot guidance.

B. Planning to Initiate Guidance with Partial Observability
to Pedestrian Hidden Parameters

The problem formulation in Eq. 3 involves the robot’s
trade-off between exploration and exploitation, based on the
action’s long-term value. Therefore, belief planning serves
well as our solution basis, interleaving decision value with
expected information gain. In belief planning, solution com-
plexity is exponential to the search horizon H, based by the
action space A and observation space O. For our application,
long-horizon rollouts are needed for wayfinding performance
evaluation. Search complexity then becomes a challenge for
real-time computation. Past research using samples for belief
representation were effective in reducing the computational
growth based by observation space [29], [30]; yet, the search
grows exponentially by action space. We therefore contribute
a solution to deal with long-horizon search by decoupling
actual information-gathering (navigational) actions from the

planning of communication actions, and iteratively updating
optimal plan value till convergence.

1) Decoupled information-gathering from search: Since
0g.+ are concerned with passive observations to pedestrian
motions for belief update, the robot’s information-gathering
actions do not affect the pedestrian’s state transition '. We
therefore disassociate the observation collection process from
the communication-action planning, and divide the planning
into two phases, in a backward-forward fashion: 1. solving
for Eq. 3, using only communication actions to plan the
guidance initiation timing (and potential targets), while con-
sidering potential future observations og.; assuming “perfect
visibility” to collect observations; and then, given planned
initiation timings to potential targets (if any, otherwise stay
idle for other task assignment), 2. to plan navigation actions,
to physically maintain visibility to target pedestrians to
collect more observations (that potentially improve decision
quality), while meeting the spatial preconditions to initiate
interaction at planned timings. With updated navigation ac-
tions and the true collected observations along the navigation
process, the estimated guidance value in Eq. 3 should be
updated, as shown in Fig. 2. This process should iterate, to
make sure the observations which impact the belief update
(and therefore the optimal expected guidance value) are
indeed measurable given navigation actions, and the updated
navigation costs are worth it. This search is initialized with an
optimistic value estimate with perfect observability; with an
Euclidean-distance heuristic initialized for navigation costs,
the overall hybrid search is admissible.

2) Communication action abstraction: In the belief plan-
ning process, we consider abstracted communication action
representation for guidance: the action has the expected effect
to update the subject’s cognitive map, whose policy transits
to efficient route-following behavior towards the destination.
Researchers have demonstrated such action effects through
modalities of verbal commands and gestures in field stud-
ies [9]; the behaviors include those to initiate interaction [16],
[18], which we refer to for detailed behavior design.

Here we apply an estimated lump-summed value for
CHE ;. 20s, and same for C[;, 1, for performance demon-
stration, and apply a 2-horizon search for communication
planning. One action then takes 20s. The robot is then to
evaluate who to first initiate guidance to maximize service
value, considering service costs, hidden parameters and their
observability along the planned horizons.

3) Fast convergence: Here we omit the computation of
exact navigation costs for plan evaluation. This simplification
saves further iteration over initiation decisions given navi-
gation cost updates, since a lump sum preparative cost is
applied; and the optimal plan converges once the optimal
value is updated given measurable observations and no other
plan outperforms with its optimistic value estimate (assuming
perfect observability).

I'The active observation action which directly clarifies hidden pedestrian
states (here 6 and bf{ ) is only considered along the communication process
to provide accurate guidance, but not solely.
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Fig. 3: Exgeriment domains collected in university public areas, featuring: rooms (framed in dark green), corridors (light blue), and open
areas (orange) with divided spaces. Pedestrian inflows from 2-3 entrances over 1000s of test time are sampled over Poisson distribution.

C. Online Performance

1) Search complexity: Due to the decoupled planning
mechanism, for navigation action planning, the (worst-case)
exponential growth in action space is up to a time ¢, the
guidance initiation timing, but not the full time horizon, H.
The belief planning applies rollouts to time H, when the
pedestrian exploratory navigation ends; during the process,
belief b7 in B = AOp x By is updated. Since the decision
on whether to initiate is of one-time actions, the computation
is linear to H, throughout the search process of initiation
timing ¢t < H. Here we consider a fixed number of sampled
observations to maintain, K, reducing the exponential growth
to linear growth. The overall computation of the long-horizon
planning problem is reduced to |A|* + KH|Bg|, t < H.
We choose K = 10 to estimate pedestrian route choices.
The navigation action space |A| includes a static action (to
not move), and 3 actions of [-15, 0, 15] degrees of angular
rotation, sampled from the previous moving direction.

2) Pedestrian state detector and belief update: we here
detect inconsistent walking direction and deviation from
potential goals, to identify pedestrian 1) goal, and 2) cer-
tainty about their goal location. The detector of certainty
about goal location is conditioned on the goal location,
o ~ Q°(xH|goal,c). c represents the state of certainty.
This detector is well studied for robot navigation in human

environment [5], [31]. Here we use a velocity-based detector:
H

goal .
p(ot|goal, ¢) exp(—ﬁ(‘zzq - &W)), where v7°" is
t

the goal-driven velocity at current location and v/’ is the
pedestrian’s velocity. As velocity estimate is noisy in real-
time, we filter position tracking data, at 10hz per laser scan
rate, and estimate velocity at 2hz. This also matches human
gait frequency, taking two steps in 1 sec on average.

For the state of uncertainty, o; ~ Q~¢(xf | —¢), we detect
based on velocity direction changes over a short horizon
h: if velocity remains unchanged, std(vft +h) < 6|, the
probability of being uncertain is exponential to h, based
by Poisson(A),k = 1: p(oy] — ¢) = exp(5)". We apply
h = 3, collecting 3 velocity estimates for 1 pedestrian state
detection. With the state detector run at 2/h hz, the belief
update can be run at 2/3hz with:

p(goal, clo) ox Q°(o|goal, c)p(goal, c),

and
p(goal, —clos) x Q™ ¢(ot| — ¢)p(goal, —c).

3) Replanning: As the belief update can be run at 2/3hz,
prediction and replanning can also be updated at 2/3hz: to
execute navigational actions ¢ = Os up to ¢ = 1.5s, update
belief at ¢ = 1.5s, replan, execute the new plan’s actions up
to 1.5s, and repeat, following a receding-horizon fashion.

V. EXPERIMENT

We validate our proposed approach 7r-VtR‘TrH in compar-
ison to the following baselines:

1) m-Now: to maximize service value by initiating right
away. This baseline outperforms all when the customer is
in need of guidance (with positive benefit compared to
self exploration). The design follows the fashion in legible
motion for intent communication [32], which encodes a
“the earlier the better” implementation in the sequential
optimization formulation.

2) m-UncertaintyDetect: to initiate guidance when pedes-
trian uncertainty over a probability threshold is detected. We
choose the value to be 0.9, such that an “obvious” back-and-
forth motion is detected by 4.5s, and an inefficient wandering
motion in wide areas (rooms and open spaces) is detected by
7.5s. This baseline implements the behavior control approach
in the literature of robot initiative interaction, to initiate when
featured behaviors of the target activity are detected [7].

3) W-X/OR‘”H : to initiate service when the expected value is
higher than not to, based on Eq. 2. It adopts the design in Lo
et.al. [19] to evaluate information value for communicative
behavior generation, and incorporates it along with the belief
operation to compute service value in expectation.

We evaluate the performance in real-world-collected in-
door environments, shown in Fig. 3, considering three com-
mon structures: rooms (domain I), corridors (domain II), and
open areas with divided spaces (domain III). We consider 3
pedestrian inflow rates: on average 1 entry every 40s, 20s,
and 10s, sampled from Poisson distribution. Each domain
is associated with 2-3 entrances, with pedestrian entries
randomly assigned. All entries are initialized as unfamiliar
with the domain, sampled from the exploratory policy mf
(independent from those sampled for robot planning). For
each entry, the robot initializes even prior on the joint distri-
bution over her goal certainty and goal. This way, relatively



Pedestrian inflow rates in domain I domain II domain III
0.025/s 0.05/s 0.1/s 0.025/s 0.05/s 0.1/s 0.025/s 0.05/s 0.1/s
7-Now 27s [17] 79s [26] 132s [36] -46s [14] 135s [26] 168s [32] 169s [20] 546s [28] 353s [31]
m-UncertaintyDetect 85s [13] 175s [22] 306s [24] 121s [5] 204s [19] 254s [11] 198s [14] 551s [22] 397s [17]
H
7r—V0R‘7r 78s [14] 233s [24] 270s [27] 90s [8] 325s [17] 515s [19] 240s [15] 597s [25] 878s [19]
H
7r—\/tm7r 149s [10] 261s [19] 510s [20] 247s [6] 394s [16] 780s [12] 289s [10] 641s [19] 916s [19]

TABLE I: Measures on saved pedestrian travel time(s) and [number of guided pedestrians] in domain I, II and III.

conservative behavior and performance are reported. Given
the above controlled conditions, results in accumulated saved
pedestrian travel time (s) and number of reached pedestrians
to provide guidance are reported over 1000s of experiment
time, shown in Table. I. Number of attempted robot task
switches and undeployed time (s) in domain III are reported
in Table. II for discussion.
A. Quantitative Analysis

I) Rooms: This domain features good visibility and con-
nectivity for pedestrian wayfinding, with an averaged travel
time 38-45s, std=34-40, among the 3 pedestrian inflow
rates. The service saved time is relatively few compared to
other domains, for most entries can find their destinations
efficiently. m-Now significantly reached more pedestrians yet
has poor performance. With the ability to identify pedestrians
who just missed their destinations, e.g., turned around earlh}(/

and missed the destination at the farther corner, 7r-V0R|7r
and 7T—VtR|7TH outperform the other two.

II) Corridors: This domain features poor visibility and
connectivity, with an averaged travel time 53-91s, std=56-
150, among the 3 pedestrian inflow rates. The travel time
highly vary in this domain, depending on the traveller’s
entrance, her goal, and the direction she turns at the inter-
section, especia}t}ly significant in the low-inflow rate scenario.
While 7r-VOR‘Tr is capable of distinguishing guidance per-
formance per entrance, this policy is incapable of inferring
future motion variations, e.g., the pedestrian from the top
entrance may soon reach her destination along the same
corridor. 7r-VtR‘7rH outperforms significantly in this domain.

1II) Open areas: This domain contains areas of levels of
visibility and connectivity, from the wide room space, wide
hallway, to the relatively narrow corridor, with an averaged
travel time 53-70s, std=53-84, among the 3 pedestrian inflow
rates. Due to the wide area range of this domain, guidance
is on average of good value, e.g., guiding out the large room
to the hallway, or from the corridor to the room. 7T-VtR|7TH
also outperforms significantly in this domain, by reaching the
least pedestrians yet improving the most travel efficiency.

1V) Task switching and undeployed time: Reported in

Table. II, in domain III, 7T-VtR|7TH has more undeployed

Pedestrian inflow rates in domain III

0.025/s 0.05/s 0.1/s
m-Now 346s [34] 308s [46] 44s [50]
m-UncertaintyDetect 716s [25] 696s [27] 505s [31]
ﬂ—VOR‘ﬂH 546s [45] 503s [44] 324s [43]
w-\/tR‘”H 726s [29] 706s [35] 505s [35]

TABLE II: Robot undeployed time (s) and [number of
attempted task switching] in domain III.

time, given that this policy less frequently initiates guidance
service, as reported in Table. I. However, the numbers of
attempted task switches are relatively high. We attribute
this to the noisy estimation of guidance value using 7.
Since occasionally 7 can sample unusual choice of route,
e.g., repetitively entering and leaving between the hallway
and the room. Such outliers significantly increase the value
estimate, encouraging gle robot to initiate guidance. This is
significant for 7T—VOR‘Tr , too, whereas m-UncertaintyDetect
has relatively robust estimation for service initiation. We
refer to potential improvements, e.g., through outlier-filtering
techniques, as future work of interest.
B. Discussion
»”» » . R|7H R|xH

1) “Unexpected” behaviors: m-Vj and 7-V, oc-
casionally attempt to initiate guidance way before uncertainty
is detected. This occurs especially more often in Domain II,
where 7 can get stuck or repeat a lengthy route, resulting
in high variance of V™" estimation; and significant observa-
tions are not expected farther along the narrow corridor until
the intersection, to distinguishably estimate travel uncertainty
and destination. We refer to this initiative behavior as to early
prevent “worst-case” loss.

BIx" can delay the

2) Cost-performance of pending: w-V,
initiation 10-20s later than W-VOR|7TH, especially in the low
entry-rate scenarios, appearing more conservative.

3) Communication action and recipient response: as the
resultant guidance behavior (including the presumption and
timing) differs from that in previous literature, e.g., to initiate
only when uncertainty is detected, the form of interaction and
the recipient’s response require further study. For example,
the robot can provide critical information directly to the wide
audience which prevents worst-case performance, as costly
communication may not be expected as worth it by customers
who have not realized they need guidance yet.

VI. CONCLUSION

For robots to be deployed in the field and efficiently
provide service, this work contributed a solution that uses
the agent-based model for guidance cost-performance esti-
mation, and generated domain-structure aware strategies to
initiate guidance. Validated in real-world maps of common
indoor structures, our approach was shown to be more effi-
cient by saving more pedestrian travel time while providing
the least number of services, compared to the behavioral-
based guidance strategy and the intent-communication strat-
egy in prior arts. Improvements on service value filtering
are expected for more robust and consistent decisions on
service initiation. The form of communication and the sub-
ject’s response require further study, as the communication
strategy/behavior differs from those in the literature.
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