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Abstract— To enable robots to smoothly interact with humans
during their travels together as a group, robots need the
ability to adapt their motions under environmental changes
and ensure all group members’ routes are feasible. To achieve
this ability, robots require knowledge of the final destination
and the subgoals in between. In practice, such information
is seldom shared explicitly among group members, and may
be frequently updated. Under this uncertain setting, main-
taining travel efficiency and behavior appropriateness becomes
a challenge. Previous literature approached the problem by
generating compliant coordinating motions inspired by human
groups, with subgoal uncertainty remaining isolated from the
plan evaluation process. We show that such coordination can
lead the robot to “bad” transient states where inefficient
planning and lost tracking may incur. We propose to resolve the
problem by formulating the coordinating motion as a Bayesian
stochastic game, to plan for the robot as a group member, in
the meanwhile considering the long-term effect of uncertainty
during path coordination. We show that the approach improves
travel efficiency and partner tracking robustness, by prevent-
ing assertive decisions during the inference update process.
Moreover, the approach presents “agency”, in the sense that
it can generate human-like motions, which can be applied and
contribute to the pedestrian simulation literature; the approach
also affords variants from the human-like motions to generate
robot behaviors based on sensing capabilities, contributing to
the methodology of robot behavior design.

I. INTRODUCTION

Pedestrians often travel together [1]. Travel partners share
destinations or temporary subgoals. Such information is often
communicated on-the-fly when local directions are to be
decided. Humans can fluently adapt their motions traveling
in a group, even when under frequent disturbances [2]. At
decision points, e.g., intersections, we observe that there is
often a leader (or more) in a group who actively decides
where to go, and the follower(s), without explicit communi-
cation, can adapt their motions to quickly catch up.

The followers need to perform online subgoal inference to
travel along the group, and to adapt their motions to maintain
desired group shape taking into account relative position and
distance to each other [1]. In robotics, this concept has been
applied to enable robots with human-following capabilities,
while maintaining desired group shapes [3], e.g., side-by-
side walking, a configuration often seen among travelers, as
shown in Fig. 1-Left. Such human-following capability has
been implemented along with maximum-likelihood subgoal
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Fig. 1: Left: the robot platform operating as a travel partner. Right:
the co-navigation scenario in a corridor. The robot is following the
human and uncertain about where the human will be going.

estimates [4][5]. While assertively following towards the
most likely subgoal showed success in relatively simple
environments, such strategy, under delayed inference, can
lead to bad states, e.g., with poor visibility to the other
route(s) and the partner(s), or blocking partner path options.
To resolve this issue, we formulate robot navigation with hu-
mans as a partial-information multi-agent planning problem,
and incorporate subgoal estimation into the planning process
for action evaluation. Under this multi-agent formulation, the
robot can plan for both itself and the human travel partners,
to ensure group path feasibility while maximizing the ex-
pected efficiency towards possible subgoals. We show that
the proposed planner enables robust robot following when
subject to inference delay, with 100% prevented lost-racking
(of the travel partner) and 66% improved path efficiency.
In the meanwhile, the generated robot behavior retains the
compliant feature for natural co-navigation as suggested in
the literature [3][4].

We noticed an emergent human-like behavioral feature
resulting from this approach: hesitation – the planner would
delay its action, when it is not yet certain about the subgoal
but has reached states where its actions would have dis-
tinctive (and potentially bad) values under different subgoal
specification. We observed such behavioral feature in human
groups, and show that our approach can simulate the interac-
tive motions during human subgroup division. As interactive
agent design for small-group (or often one-to-one) interaction
gains attention [6], our approach and the proposed behavioral
feature contribute to the pedestrian simulation literature,
building upon their approaches addressing “collective” group
dynamics. The approach also affords variants of the gen-
erated behaviors based on individual sensing capabilities,
which are different among humans and robotic agents.



II. RELATED WORK

In human-robot interaction, “agency” was proposed to
describe behavioral traits such as intelligence in intent-clear
motions [7], collaborativeness in teamwork [4], and even
cunningness in non-collaborative games [8]. Hesitation, as
a behavioral trait, was studied in a human-robot object-
reaching scenario [9]; by mimicking human demonstrated
trajectories, robot hesitant motion was shown to be perceived
as more compliant and safe by the human partner. Yet, for
their approach and such motion to be applied in general
human-robot interaction, it remains unclear regarding when
and for how long such behavior should be exhibited to be
adequate.

Individual human behavior simulation is widely studied in
crowd modeling, for large-scale computer graphics applica-
tions [10] and high-density chaos analysis [11]. Due to such
target applications, crowd modeling, studying both individual
travelers [12] and groups [1], is often concerned with large-
scale collective pedestrian behaviors. The methodology that
models interaction based on “forces” among autonomous
decision-making individuals is referred to as agent-based
modeling [13][12]. As video games prosper, interactive agent
design starts gaining attention, for which delicate realistic
behaviors and small-group interactions are targeted [14][6].

For navigation, applying agent-based modeling tech-
niques [15][16] for human-like motions enables appropriate
behaviors in some situations [17][4], yet there are scenarios
where incomplete decision-making models appear incapable
to accommodate, e.g., inference delay can make approaches
to suffer from unnatural behavior [5]. Robustness remains
concerned for long-duration interaction and user engagement.
Human-mimicking as a strategy to generate robot behaviors
can then appear unclear of the motives for performance
evaluation. Compared to those behavior-based approaches,
our proposed model uses a planning formulation to eval-
uate action impacts, and then uses the model to generate
motions with agency. For co-navigation, in this work, it is
to ensure path feasibility and human-partner tracking. Such
approach was also used to generate intent-communicative
motions [18].

In robotics, inference mechanisms are often isolated from
motion planning. Planning in human workspaces has been
formulated in the single-agent setting, which fails to capture
the mutual-adaptability feature in group motions [19][20].
By incorporating information uncertainties into a multi-agent
planning process, our planner retains the interactive behav-
ioral features in groups, and ensures decision robustness
in the sequential decision-making process. Here we model
the problem using stochastic Bayesian game, or partially-
observable stochastic game [21], for their interactive poli-
cies generated based on partner/opponent modeling. Other
multi-agent decision-making models, especially interactive-
POMDP [22] and DEC-POMDP [23], are also suitable for
our problem; planning algorithms well serve the continuous-
time navigation domain, as a general control paradigm,
which fits our solution concept.

III. PROBLEM FORMULATION

We formulate the dynamics of group motions as a se-
quential optimization problem. We use a game formulation
to lay out the mutual-adaptability behavioral features in the
literature of crowd simulation [13][1], [2] and robot planning
for human-following [3][4][5]. We then point out the issue in
their behavioral assumption and propose our group follower
model using stochastic Bayesian game.

A. Group Navigation: Collaborative Stochastic Games

Pedestrian groups often maintain certain shapes to facil-
itate interaction among the members, e.g., to see others’
faces or stay aware of the focus or attention. Group shapes
are affected by environmental conditions, such as crowd
density, crowd speed, and building configuration. Under
theses changes, pedestrians adapt their motions, and therefore
the group shape, to coordinate with other pedestrians [1].
The shape formulation and the “mutually adaptive” fea-
ture describe the macro pedestrian group behaviors 1. We
therefore first model the macro pedestrian group behavior
as a stochastic game. In stochastic games, N agents act
at a time, here illustrated at time t: the joint-action at =
(a1
t , a

2
t , ..., a

N
t ) ∈ A is defined by the action spaces of

all agents A = A1 × A2... × AN ; the joint-state xt =
(x1
t , x

2
t , ..., x

N
t ) ∈ X is defined by the state spaces of all

agents X = X1 × X2... × Xk. Time is discretized, and
game periods are defined: at the start of each period t, each
agent selects an action ait, i = 1 : N , then the transition
function T : X × A → X takes in the current state xt and
determines (probablistically) the state at the beginning of the
next period xt+1. The reward rit of an agent i at time t is
defined as follows: rit = ri(xt, a

i
t, a
−i
t ) ∈ R, where ri is the

agent’s reward function, and −i denotes all agents except i.
Here we consider all agents to have the same collaborative
reward function r, to maximize the group social welfare.

The optimal state-action value function Q in the single-
agent setting is generally defined as: Q(xt+1) = rt(xt, at)+
Ext+1

[V (xt+1)]. To find the optimal policy of this multi-
agent problem, we first assume the agent has good modeling
of the policies of other agents, π−i. The optimal state-action
value function of agent i while other agents use policy π−i

is denoted as Qi|π
−i

and defined as:

Qi|π
−i

(xt) = max
ait

Ea−i
t ,xt+1|π−i,T [r(xt, a

i
t, a
−i
t )

+V i|π
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(xt+1)],

(1)

where V i|π
−i

(xt) is defined recursively as:

V i|π
−i

(xt) = max
ait

Ea−i
t ,xt+1|π−i,T [Qi|π

−i

(xt, a
i
t, a
−i
t )].

(2)
Here the expectation E is taken over other agents’ policies
π−i and the state transition T to accommodate noise in π−i

1Side-by-side walking is commonly observed among groups of 2-4
members [1]. Other commonly observed configurations are ”V” or ”U”
shapes, bent forward for 10-20 degrees, or divided side-by-side subgroups,
when crowd density is high. We choose this group shape to demonstrate the
proposed approach, but do not limit from applying to other shapes.



modeling and policy execution. V i|π
−i

(xt) is defined in the
joint state space X , and dependent on the modeling of π−i.
The optimal action of agent i at time t is therefore:

ai∗t = argmax
ait

Ea−i
t ,xt+1|π−i,T [Qi|π

−i

(xt, a
i
t, a
−i
t )]. (3)

B. Behavioral Assumptions in Agent-based Models

We now incorporate the goal-driven characteristics of
group navigation into the individual reward function:

r
i|θ
t = ri(xt, a

i
t, a
−i
t |θ). (4)

The optimal policy in Eq. 3 is then amended through
conditioning its terms, e.g., π−i, ri, and Qi|π

−i

, on θ,

ai∗t = argmax
ait

Ea−i
t |θ

[Qi(xt, a
i
t, a
−i
t |θ)]. (5)

This equation follows the stochastic Bayesian game formula-
tion, in which agent rewards are parametrized by their types.
Agents have partial observability to the types of other agents.

Instead of solving this stochastic Bayesian game equation
based on modeling and inference of π−i and θ, in previous
approaches mentioned in agent-based modeling and robot
navigation [2][3], local information is assumed accessible to
all nearby agents, which means that θ is assumed known and
shared by all agents. With the assumption that θ is of common
knowledge to all group members, namely everyone knows
they share this information and everyone knows others know
that and so on [24], solving for the optimal collaborative
policy for agent i in Eq. 5 converges to the solution of having
a centralized system optimizing for the whole group,

ai∗t = argmax
ai
t

max
a−i
t

Ext+1∼T (xt,at)[r
i(xt, a

i
t, a
−i
t |θ) + V i(xt+1|θ)].

(6)
This optimal policy with known θ, π∗(xt|θ), is referred as
the zero-inference policy of agent i: πi,0, imposing the col-
lective agency assumption in teammate modeling in Bayesian
games [25]. It can be thought of as a policy where the
leader plans for the whole group to optimize group efficiency,
and the members know this plan and follow. The converged
homogeneous solution πi,0 describes the mutually-adaptive
macro pedestrian group behavior: they reciprocally leave
room for others to avoid obstacles, and expect partners to do
the same. πi,0 follows the formulation of π∗(xt|θ), which is
parametrized by θ, the type of an agent.

C. Proposed Follower Behavioral Model

The common knowledge assumption is however invalid for
real-world applications, and can lead to inefficient motions
due to false parametrization. Here we describe following
behavior using the general stochastic Bayesian game for-
mulation in Eq. 5. With group leader(s) modeled by π−i,0,
the follower makes observation ot ∈ O at time t, and use
the observation history o0:t−1 to compute the expected value
over θ:

ai∗t = argmax
ait

Eθ|o0:t−1,T [Qi(xt, a
i
t, π

i,0(xt|θ)|θ)]. (7)

Here O is the observation space. Given online observations,
type identification influences the optimal policy on-the-fly.

Fig. 2: (a) The follower (right) stayed slightly behind the leader
(left), and (b) adapted his gait right after the leader (left) started
turning.

In human groups, we found a common pattern among
followers that is seldom exhibited among leaders: followers
actively adjust their relative positions to stay at the rear of
the group, as shown in Fig. 2. Although such behavior varies
among people: they may do so throughout navigation, off-
and-on, or just during some part of experience, e.g., in front
of intersections [5]. This movement may seem inefficient, but
it helps ensure the future observability of the leader motions,
which is especially important when encountering distinctive
route options. We associate the rear-positioning feature with
information gathering for behavior generation, with sensing
capability (e.g., visible range) modeled in the formulation:

ai∗0:T = argmax
ai0:T

Ex0:T ,θ|Ωi,T [

T−1∑
t=0

ri(xt, a
i
t, π

i,0(xt|θ)|θ)+

QiT (xT , a
i
T , π

i,0(xt|θ)|θ)],
(8)

where Ωi is the observation function, affected by the agent’s
sensing capability. Ωi : X × Ai → O samples agent i’s
observation given joint state xt and agent action ait. Here we
consider finite-horizon lookahead T , to generate the local-
observation-driven human-inspired behavior [7][12]. The
multi-agent sequential optimization problem in Eq. 5 now
becomes a more tractable belief planning problem in finite
type space Θ. Compared to prior work in crowd modeling
and robot following (formulated by Eq. 6), with Eq. 8,
incorporated with agent sensing capability modeling Ω, the
following agent would not assertively turn to a dead-end,
go in front of the leader, or stay behind a corner obstacle,
leaving the leader out of its sensing range. We here iden-
tify this uncertainty-driven observation-sensitive behavioral
feature, and refer to it as having first-order inference for
teamwork planning: πi,1: here agent i needs to model other
agents as having independent knowledge, which is the basic
ability of theory of mind in human behaviors [26].

IV. ALGORITHM

We here detail the techniques to solve for Eq. 8. We first
explain the techniques to solve for π−i,0, or Eq. 3. With
π−i,0 solved, the goal-reaching macro group behavior can
be simulated, and its performance is validated in Section V.
We then solve for π−i,1, or Eq. 8 with uncertainty on goal
parameter θ and sensing capability modeling Ω. The planning
process involves 1) search in belief space and 2) belief update



Fig. 3: Graphical model and state transition in stochastic games
(Top), v.s. in stochastic Bayesian games (Bottom) for planning. In
stochastic games, a−i

t is directly sampled from π−i; in stochastic
Bayesian games, a−i

t is sampled conditioned on θ, which is sampled
from belief state bt.

based on sampled observations. The procedures are illus-
trated in Fig. 3. The use of π−i,0 for group member modeling
utilizes the collective agency assumption, and restricts the
strategy space for group motion sampling and for model
identification, which improves the computational tractability
for multi-agent planning under partial information.

A. Planning in Joint Action Space

To plan in stochastic games, it involves sampling other
agents’ current actions, which are hidden to the planning
agent. We use heuristic search through a tree structure with
finite horizon T , and use T for forward simulation. The
tree search starts with a root node xt. A node expands
through forward-simulating the state-action pair based on
sampled actions: xt+1 ∼ T (xt, at), and receives a re-
ward rit = ri(xt, at). When planning in stochastic games,
both reward function ri(xt, a

i
t, a
−i
t ) and transition function

T (xt, a
i
t, a
−i
t ) involve the sampling of other agents’ actions

a−it , as illustrated in Fig. 3-Top. Here, with the collective
agency assumption, we can solve for Eq. 6, as if all agents are
controlled by agent i, for π−i,0 sampling and θ identification.
The search is then in the joint action space, and the worst-
case complexity is: (N |Ai|)T , conditioned on θ ∈ Θ. We
apply Euclidean-distance-to-goal as heuristics in this work
for value estimate at time T , V T (xT |θ), and use it to select
which of the sampled actions to expand the search tree.

Then, applying π−i,0 to solve for Eq. 8, the first action
of optimal action sequence a−it ∼ π−i,0(xt|θ) serves as the
group motion prediction for node ait at state xt.

B. Planning with Hidden Type Parameters

We apply another layer of tree search, in addition to
that to solve for Eq. 6, to solve for Eq. 8. Due to the
uncertainty to θ, at each time t, θ ∈ Θ are sampled for
a−it ∼ π−i,0(xt|θ), to apply state transition, as illustrated
in Fig. 3-Bottom. Agent i’s actions ait are sampled for
planning and node expansion, along which a−it sampled
for prediction, the reward and state transition are estimated
conditioning on θ: r̂it = Eθri(xt, ait, π−i,0(xt|θ)|θ), and
x̂t+1 = T (xt, a

i
t, π
−i,0(xt|θ)).

When planning in partially observable environments, at
the end of each time t, an observation ot+1 is received,
based on which the beliefs of hidden variables are updated.
While one would desire to sample as few observations as
possible to maximize computational efficiency (especially to
plan in real-time), it is important that some ”key” scenarios
are captured. In our navigation domain, different subgoals
can lead to distinctive leader actions a−it , which serve as
observations to infer subgoal location. Here we assume a−it
are measurable at time t + 1, serving as the observations
for θ belief updates: oit+1 ∼ Ωi(xt, a

i
t|θ). Ωi is affected by

sensing quality and range. At each time t, we maintain a
belief bt over all possible states θ ∈ Θ; the belief bt at time
t can be updated through applying Bayes’ rule:

bt+1(θ) = ηΩ(ot, xt, a
i
t|θ)

∑
θ∈Θ

bt(θ), (9)

where η is a normalizing constant. Since θ is assumed
static, no state transition is applied in this formulation. This
model reduces the sample complexity from the observa-
tion space |O| to the small belief space |Θ| and there-
fore improves the computational efficiency. We also apply
Euclidean-distance-to-goal for expected cost-to-go estimate,
V̂ iT = Eθ[V i(xT |θ)].

Since here we only consider agent i’s own observation for
ot and use a−it ∼ π−i,0(xt), along with ait, for state transi-
tion, the planning procedure is similar to that in POMDPs: to
apply state transition at state xt based on selected action ait,
and to update belief based on newly received observations oit,
except that here we need to solve a search for every a−it ∼
π−i,0(xt), on top of which we solve the search for πi,1

(for Eq. 8). This overall search computational complexity
is (N |Θ||A|)T .

C. Implementation
1) Action space: When simulating human pedestrians, we

consider human states to be their positions and velocities, and
sample finite actions from A−i by applying constant speed
change and angular velocity of the range [-1,1] m/s2 and
[-45,45] deg/s from a base velocity, which is 0.7 m/s at
current walking direction. We consider the robot state as its
position, body orientation, and head orientation. We use the
same sample action set from Ai for robot planning.

2) Subgoal Inference: The observation ot measures of
other agents’ current state x−it for their previous actions
a−it−1, and can only be received when x−it is within the visible
range of agent i; if not, no Bayesian update is conducted.
Based on this condition, an agent then predicts ot based on Ω,
which is a function of the previous state xt−1, previous agent
action ait−1, and the hidden state θ. We here use a common
velocity-based estimator for subgoal inference [27], using
δ, the velocity direction (or body orientation) differences
from that of the full-knowledge policy rollout a−it ∼ π−i,0,
conditioned on subgoal θ:

Ω(ot+1, xt, a
i
t|θ) ∼ exp(−βδ). (10)

This corresponds to the intuition that an observation is
sampled with higher probability when the leader takes an



Fig. 4: Macro group behavior simulated by π−i,0: the agent
(marked in green triangles) plans for all agents, and therefore
actively yields space for partner when encountering other groups
(Left) and obstacles (Right).

action closer that predicted by π−i,0, which is conditioned on
subgoal θ. β > 0, tunes how quickly the probability decays
over distance. β can take in different values based on domain
configuration to bias convergence rate. Here we use β = 1
for the going straight and β = 1 for turning. The probability
of ot+1 is then used for belief update in Eq. 9.

3) Online planning: We plan in a receding-horizon fash-
ion, to replan once once a new observation is received: at
each time t, the robot executes the first planned action ait,
updates belief bt based on newly received observation ot,
replans and repeats at time t+1. We consider finite horizon
T for planning, covering 3 secs for follower planning πi,1

with 4 secs of leader prediction using π−i,0. The choice of
T is based on the real-world observation that leader usually
responds 3 secs before the intersection, and then the follower
adapts 1 sec later.

4) Social cost function for group navigation: The planner
optimizes action performance based on: travel efficiency (by
time, weighted by 1), desired group configuration (quadratic
regulation on shape deviation, weighted by 5), desired hu-
man walking pace (quadratic regulation on speed deviation,
weighted by 5). We filter out nodes with potential collisions
with the partner and the environment, detected based on a
safety margin. While the desired group configuration may
vary and thus needs to be estimated on-the-fly , we here
omit this process, and choose the side-by-side configuration
for proof of concepts.

V. VALIDATION

We perform two studies to validate our approach: one
to validate the proposed behavioral feature for pedestrian
simulation, and the other for robust group following.

A. Pedestrian Group Behavior Simulation

We first validate the ability to emulate the macro group
behavioral feature as proposed in the literature, and second
to emulate group follower behavior observed in field study.

1) Group behavior simulation: We simulate human leader
behavior based on the zero inference assumption: π−i,0, and
show the macro mutual-adaptive group behavior features (as
proposed in previous literature [1][4]) in Fig. 4: in confined
spaces, the planner actively leaves space to coordinate with
an upcoming group (Fig. 4-Left), and to avoid partner
collision with an upcoming obstacle (Fig. 4-Right).

With the above leader predictive model π−i,0, which
assumes the follower to also know the subgoal (therefore not
guiding the follower explicitly), we simulate human follower
behavior with πi,1. The follower then plans while actively

Fig. 5: Synthesized human side-by-side walking at an intersection
(Left), and the simulated behaviors using πi,1 (Middle and Right).

sensing the leader’s subgoal, as shown in Fig. 5. We simulate
with the sensing range of [-75,75] deg from head orientation,
causing the simulated follower to slow down and stay slightly
behind the leader once subjected to direction uncertainty.
With varied safety margin, the follower may stay tight the
leader (with margin=0.8m, as shown in Fig. 5-Middle), or
yield space (with margin=1.1m, as shown in Fig. 5-Right)
to prevent itself from blocking the leader to turn, which was
suggested as preferable behavior [5]. Yet, when simulating
with a robot sensing range covering [-120,120] degree, the
slowing-down feature is eliminated, as shown in Fig. 7-Right.

2) Field study: to validate that our model produces real-
istic pedestrian behavior, we use a case study approach with
real-time pedestrian data. Under exempt IRB approval, video
data was collected from an overhead view, in a university
atrium. One case is highlighted in Fig. 6.

At t=0 (annotated in seconds), the group of four was
divided as an individual separated from the original group
(location marked with blue circles); she slowed down and
then changed direction from t=-4. The follower at the rear
slowed down starting at t=0, changed orientation at t=2, and,
qualitatively, appeared indecisive. After a short conversation,
he changed walking direction at t=4. The follower (location
marked with green triangles) is simulated with even initial
prior at t=0 on which of the two subgroups to follow, and
the hesitant behavior was simulated by delaying the belief
update to turning until t=4. Before then, the original group
was reformed, therefore no cost is assigned to maintain
group configuration. The leader waited for the follower and
they started to walk again at t=6. The dashed lines are the
trajectories planned up to 3 sec ahead. The leader slowing-
down motion from t=1 to t=5 follows a handed-coded speed
profile to match the recorded locations.

B. Follower Performance under Inference Delay

As a robot group following strategy, we evaluate the path
efficiency and partner tracking robustness when subject to
inference delay, which is a common issue in robotics.

We choose cluttered environments to demonstrate the
capability, where bad decisions can lead to unrecoverable
states, given robot non-holonomic dynamics and limited
sensing capability. We choose narrow corridor intersection
for such design, with an obstacle at the corner which
potentially blocks the robot’s view to continuously track the
partner, shown in Fig. 7. We implemented the state-of-the-art
robot following approach as the baseline [5], in comparison



Fig. 6: Human subgroup division and its simulation by πi,1: four pedestrians initially traveled as a group (t=-4); one member
(marked with blue dots) gradually detached from the group when close to the intersection (t=-3 to -1). Then the one at the
rear (marked with green triangle) hesitated about which to follow (t=0 to 3), later turned to catch up the waiting member
(t=4 to 6), and formed a new subgroup (t=7).

with our planner under sensing range of [-120,120] deg,
which is achievable with common Lidars. Experiments are
conducted with 20 trials of randomized initial group locations
with state estimation noise. Even priors are initialized on
each local direction. Example paths can be seen in Fig. 7:
as our approach is aware of future observations during the
planning process, more robust motion is generated.

We report the travel time delay as the path quality measure,
compared to that predicted by the zero-inference policy πi,0

(that is, with a correct prior). While the baseline had an
average delay of 3.53s, our planner had an averaged delay
of 1.19s (saving 66%). Among all trials, our planner expe-
rienced zero lost tracking, while the baseline experienced
10. An example is shown in Fig. 7-Middle: when belief
converged at t = 10, the baseline had gone close to the
obstacle, making it lost track of its travel partner.

C. Discussion

1) Robustness and communication: while we showed that
robust decision-making can prevent robots from losing track-
ing of humans and inefficient motions due to false beliefs
or delayed inference, communication is a common strategy
to actively resolve the negative impact of uncertainties.
While robust planning helps to ensure durable deployment,
communication through eye contacts, gestures, or conver-
sations is often seen in human groups, to coordinate or
to explicitly discuss about new sugoals. Partner uncertainty
detection and the robot responses are therefore acknowledged
as important future work to enable smooth co-navigation
with humans [18].

2) Behavior design methodology: while human-emulation
has been a successful methodology to generate socially-
and functionally competent robot behaviors [28][29][30],
our model, out of an optimization formulation, generates

Fig. 7: Robot follower behavior under inference delay: our
planner (Right) evaluates action values based on predicted
future leader actions, therefore prevents bad state values
(Left), which lead to future lost track of partner (Middle).

robot behaviors that can be human-like. We also show that
emulating humans can lead to inefficient robot motions given
sensing capability differences, e.g., robots with full-range
sensing and fast inference can stay tight to the partner
without concerning observability to partner motions. Our
model then serves as a tool to generate robot behavior with
quantitative performance improvement, in the meanwhile
provides for qualitative behavioral analysis of the emergent
human-like behavior.

VI. CONCLUSION

In this paper we present a mathematical framework for
planning for group agents, implemented in group navigation,
which eliminates the need for full-knowledge behavioral
assumptions as used in the literature. The multi-agent partial-
information planner enabled robust following performance
subject to subgoal information uncertainty. When applied
with limited human sensing range, it exhibited motions emu-
lating real-world group behaviors observed in field study. Our
approach generated robot behavior with improved objective
performance and provided behavior-based analysis of its
emergent human-like motions, serving as a tool for future
human-emulating agent design.
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space planning for sidekicks in cooperative games.” in AIIDE, 2012.

[7] S.-Y. Lo, K. Yamane, and K.-i. Sugiyama, “Perception of pedestrian
avoidance strategies of a self-balancing mobile robot,” in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and
Systems. IROS’19. IEEE, 2019.

[8] E. Short, J. Hart, M. Vu, and B. Scassellati, “No fair!! an interaction
with a cheating robot,” in 2010 5th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI). IEEE, 2010, pp. 219–226.

[9] A. Moon, C. A. Parker, E. A. Croft, and H. Van der Loos, “Design and
impact of hesitation gestures during human-robot resource conflicts,”
Journal of Human-Robot Interaction, vol. 2, no. 3, pp. 18–40, 2013.

[10] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” in ACM
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