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ABSTRACT
A general learning task for a robot in a new environment is
to learn about objects and what actions/effects they afford.
To approach this, we look at ways that a human partner
can intuitively help the robot learn, Socially Guided Ma-
chine Learning. We present experiments conducted with
our robot, Junior, and make six observations characterizing
how people approached teaching about objects. We show
that Junior successfully used transparency to mitigate er-
rors. Finally, we present the impact of “social” versus “non-
social” data sets when training SVM classifiers.

1. INTRODUCTION
Our research is motivated by the promise of robots that
operate and assist people in human environments. It is rea-
sonable to assume these robots will need to learn during
their deployment, since pre-programming every skill needed
is infeasible. In our view, robots should be able to do some
learning on their own, but they will also need to learn in-
teractively from everyday people–who are likely unfamiliar
with robotics and Machine Learning (ML). In prior work,
we began exploring how self-exploration and guided learn-
ing can be mutually beneficial [17]. In the work presented
here, we aim to understand a teacher’s role in physically
interacting with the learner and the workspace.

In a new environment, a general task for the robot is to learn
about the environment’s objects and what actions/effects
they afford–Affordance Learning [11]. We take a Socially
Guided Machine Learning (SG-ML) approach to this task.
In this paper, we first situate our approach in the context
of prior work. We then present social learning experiments
conducted with our robot platform (Fig. 1), yielding three
contributions: (1) We characterize how people taught Junior
about objects, and how this differs from a systematically
collected “non-social” data set. (2) We show that Junior was

Figure 1: Junior—our robot platform.

able to use a gazing behavior to improve the interaction and
mitigate errors. (3) We show the impact of “social” versus
“non-social” data sets in training Support Vector Machine
(SVM) classifiers.

2. BACKGROUND
For years researchers have been inspired by the idea of effi-
ciently transferring knowledge from a human to a machine.
In most prior work, systems were not tested with everyday
persons; nonetheless, a review characterizes the ways ma-
chine learning systems have leveraged human input.

Machine learns by observing human: Several systems
deal with the scenario where a machine learns by passively
observing a human: Learning assembly tasks [9], learning
a peg-in-hole task[19], learning a task reward function [1].
Generally, our goal is to have a more interactive system, that
learns in real-time from everyday people, taking advantage
of how such users will naturally provide instruction.

Human explicitly directs action of the machine: In
many works, the human directly influences the robot’s ac-
tions to provide a learning experience: learning tasks by fol-
lowing a human [12], by tele-operation [15, 7], by physical
interaction [3], by selecting demonstration actions in a GUI
interface [5], or making action suggestions to a Reinforce-
ment Learning agent [10, 16]. These approaches are more
interactive than learning by observation and more closely re-
semble our goals. However, most require the human to learn
how to correctly interact with the machine and to know pre-
cisely how the machine should perform the task.

Human provides high-level evaluation, feedback, or
examples to a machine: In other systems a human in-
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Figure 2: SG-ML explicitly has the human “in the
loop”, in contrast to standard supervised ML.

fluences the experience of the machine with higher level in-
put. For example, providing feedback to a reinforcement
learner [8, 13], or examples to an active learning system [4,
14]. Again, the human acts as an explicit teacher for a spe-
cific task, i.e., the human provides input in a form that is
designed explicitly for the learning system rather than the
human.

3. APPROACH
In much of the work mentioned above, the primary motiva-
tion for using human input is to achieve performance gains
for the machine. Our approach, Socially Guided Machine
Learning, advocates designing for the performance of the
complete human-machine social learning system. This re-
frames the machine learning problem as a human-machine
interaction, and allows us to take advantage of human teach-
ing behavior to construct a learning process that is more
amenable to the human partner.

In general, supervised Machine Learning has a human pro-
vide input examples to the learner, which performs its task
and provides some output. Alternatively, an SG-ML view of
learning models the complete human-machine system (char-
acterized in Figure 2). An interaction approach to machine
learning forces us to consider many new questions high-
lighted by this simple diagram. We need a principled theory
of the content and dynamics of this tightly coupled process
in order to design systems that can learn efficiently and ef-
fectively from everyday users.

Input Channels: An SG-ML approach asks: “How do hu-
mans want to teach?” In addition to designing for what the
machine needs in learning, we need to understand what hu-
mans will naturally try to communicate in their everyday
teaching behavior. We can then change the input portion
of the ML training process to better accommodate a human
partner. In Section 5.1, we present a characterization of how
people approach the task of teaching Junior about objects.

Output Channels: An SG-ML approach asks: “How can
the output of the learning agent improve the performance
of the teaching-learning system?” In an interaction, a ‘black
box’ learning process does not help the teacher improve the
quality and relevance of their instruction. By communicat-
ing internal state, e.g., revealing what is unclear, the agent
could greatly improve the experience, guiding the teaching
process. In Section 5.2, we show that Junior can effectively

use eye gaze as a transparency device in the learning process
to elicit the desired support from the human teacher.

We claim there are two reasons that computational learning
systems should make use of social learning principles:

(1) Better for the human: To learn from everyday peo-
ple, a working hypothesis of SG-ML is that using aspects
of human social learning is the most natural interface. Sev-
eral studies show that humans inherently and dynamically
provide social scaffolding for learners. Greenfield describes
studies, of children learning language and learning to weave
[6]. Teachers dynamically adjust the support provided based
on skill level and success, and they are unconscious of the
process or method by which they are teaching.

Thus, the partnership of social learning is an intuitive inter-
action for people. We see this in the work presented here,
where people respond consistently and appropriately to the
robot’s use of gaze as a social cue (Section 5.2).

(2) Better for the machine: This point is generally less
intuitive, but one way to think of it is that social interaction
provides biases and constraints that simplify the problem for
the machine. Thus, social learning can lead to a more effi-
cient and robust machine learning process. We have shown
examples of this in prior work [18]. Additionally, in Section
5.3 we show the positive impact of social learning in the
context of learning SVM classifiers.

4. RESEARCH PLATFORM
4.1 Hardware
Our platform for this research is Junior, a Bioloid robot
configured as an upper torso humanoid with a Webcam head
(Fig. 1). It is approximately 10 inches high. It has 8 degrees
of freedom, which enables arm movements, torso rotation
and neck tilt. Junior’s action set consists of two actions:
poke–a single arm swing (e.g., for batting or pushing objects)
and grasp–a coordinated swing of both arms. Both actions
are parametrized with the height and distance of the object
to which the action is directed.

We use the OpenCV Library to track objects with Contin-
uously Adaptive Mean Shift based blob tracking for pre-
defined colors. The state of an object in the workspace is
specified with several blob properties. This includes mea-
sured properties: distance (obtained by the neck position
required to center the blob in the image, assuming it is on
the table), color, area (number of pixels), orientation, height
and width (length of major and minor axes); and derived
properties: eccentricity (ratio of major and minor axes) and
squareness (ratio of connected component area to the area
of the minimum enclosing rectangle). These are features
common in object affordance learning [11].

4.2 Software
Junior’s behavior system is implemented in C5M, a cogni-
tive architecture for interactive characters [2]. Junior’s in-
teraction with the objects is regulated with three behaviors.
When there’s no object in the visual field a search behavior
randomly changes the head tilt until an object is in view.
Then a fixation behavior centers the object in the visual
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Figure 3: (a) Junior’s object set in the experiment
(b) Junior’s workspace

field. The object interaction behavior triggers one of the
two actions when an object is stationary in the center of
visual field for about two seconds.

Junior also has a gazing behavior triggered by the error
situation, which occurs when the object is stationary but
cannot be centered in the visual field due to a joint limit
(i.e., objects too far or too close). The gaze action consists
of moving the neck tilt to the upper limit and moving back
to the starting tilt angle; thus, it makes the assumption that
a person is sitting in front of it.

4.3 Learning Framework
In order to study learning about objects, we employ an af-
fordance learning paradigm. Junior interacts with objects
to learn the effects of its actions on various configurations
of each object. Junior obtains interaction experience tuples
during an exploration phase. Each tuple is of the form [ini-
tial object state; action; perceived effect/affordance], a com-
mon representational framework used in affordance learn-
ing [11]. This data set of experience is used to learn affor-
dance classifiers to predict action outcomes.

Junior learns about a set of five simple objects with differ-
ent geometrical shapes and bright, distinct colors (Fig. 3(a)).
The robot sits on a tabletop, and its workspace for our ex-
periments is a 5 inch straight line in front of it (Fig. 3(b)).
Action effects are perceived by the robot as changes in the
object state. We hand labeled each sample with the most
obvious affordance category. The effects for grasping are
(i)lifted: the object moved upwards until it was dropped,
(ii)opened: the cover of the box separated from the bottom,
and (iii)other: the object slipped and fell down, was moved
away or was thrown away during grasping. The effects for
poking are (i)rolled: the object kept moving in the poking di-
rection after contact was lost, (ii)moved: the object moved
(displaced, oriented or both) in the poking direction until
contact with the object was lost, and (iii)tipped: the object
fell over around one point. Both actions have the category
of (iv)no effect in which the object does not move at all.

5. EXPERIMENTS
Our experiments with Junior’s affordance learning are mo-
tivated by the following three questions:

1. What is the nature of a human teacher’s input in the

process of learning about objects in the environment?

2. How can the robot dynamically influence the teacher,
to provide a better input signal, improving its own
learning environment?

3. What impact does a socially collected data set have on
the underlying machine learning processes?

We study two modes of affordance learning to explore these
questions: social and non-social. In the non-social case (also
referred to as the “systematic” case) the workspace and the
object configuration space are exhaustively explored with
both actions. Each object is moved at 0.25 inch intervals on
the workspace in several possible orientations. We consider 2
orientations for the cube, 5 for the cuboid, 9 for the box and
one for each sphere. The cube can be parallel (flat surface
facing Junior) or diagonal; the cuboid can be standing or
lying (long edge normal or parallel to table), different edges
facing Junior or diagonal; and the box can be in its normal
configuration (cover on top), or its two pieces separately,
round surface facing upwards, facing the side or facing Ju-
nior. This results in a total of 756 object interactions in the
non-social case.

In the social case, a human teacher controls which objects
the robot interacts with, and decides where and how to place
the object in the workspace. We collected data in this social
case from 14 subjects, recruited from the campus community
(78% male). In the experiment introduction, subjects were
informed about Junior’s exploratory behavior and told that
their goal is to help Junior learn what it can do with the
five objects. They were told not to move the object once
Junior has started an action, and that the action ends when
Junior’s arms are back to their idle position. They were
asked to place one object at a time, horizontally centered on
the line indicating the workspace. The experiment duration
(number of object interactions) was the subjects’ decision.

Junior’s torso rotation is restricted to the center position and
not used in the search and fixation behaviors. Therefore, fix-
ation consists of vertically centering the object in the image
and any horizontal deviation results in an error condition,
triggering the gaze behavior. Additionally, action arbitra-
tion is avoided to make sure that the subject knows what
action Junior will execute next when they are configuring the
workspace. Thus, each subject started experimenting with
one action and decided when to switch to the second ac-
tion (the action presented first was counter balanced across
subjects). Subjects were not given any information about
Junior’s gazing behavior. In half of the social learning ex-
periments the gazing behavior is turned off, so we have gaze
and no-gaze groups.

We collected video of the interaction, and people were asked
at the end of the experiment to answer 25 questions. The
following sections detail our analysis of the data with respect
to the three research questions raised above.

5.1 How do people teach?
We start by characterizing the data provided by human
teachers compared to the systematically collected data. This
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Figure 4: Distribution of effects in the non-social
and social cases, for each action.

section details six observations about how people approach
the task of teaching Junior about objects.

5.1.1 Balance of Positive/Negative Examples
Data sets in the social case were more balanced in terms of
positive/negative examples than the non-social case. Fig. 4
gives the distribution of effects seen for actions on objects
in the social and non-social cases. For both actions the per-
centage of the no effect category is much lower in the social
case (bottom graph in Fig 4 (a) and (b)), and common ef-
fects such as lifted or moved is higher. Rare effects like rolled
and opened are approximately doubled in the social case.

This is a result of people’s choice of orientation and location.
They presented more examples of objects in orientations
that have more affordances. For example, for grasping, pre-
senting the cube in a parallel orientation (61%) rather than
diagonally; and presenting the box with the cover on top
(43%) as opposed to the other 8 configurations. Similarly,
people mostly placed objects easily within reach (Fig. 6).

5.1.2 Example Quantity Proportional to Complexity
The quantity of examples people gave for an object was pro-
portional to object complexity. The top graph in Fig. 5
shows the distribution of examples for each object, and the
other graphs show that this distribution was proportional to
the object’s affordance and configuration complexity.

Number of examples is primarily aligned with the number
of affordances an object has. For instance, the blue box has
a much larger number of configurations compared to other
objects (Fig. 5 bottom graph); however, the extra configu-
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Figure 6: (Top) Histogram of reachable distances,
taken from systematic data (Bottom) Histogram of
distances where subjects placed objects.

rations do not add proportionally as many affordances. Ac-
cordingly, people gave the most examples for the box object,
but in relation to number of affordances not configurations.

Another observation of the social data set, is that there are
more samples of the orange sphere compared to the red,
though they both have just one configuration and afford
rolling and lifting. Information not captured in the distri-
bution of affordances is how easily they are afforded. The
two spheres differ not only in size/color but also in texture
and weight. The small size and rough texture of the orange
sphere makes it liftable in a larger range compared to the
polished surface and high weight of the red sphere. There-
fore, people’s distribution of examples reflects their percep-
tion of affordances through properties not observable to the
robot. They take a broader view, i.e., not just afford/not
afford, but how easily it is afforded.

The questionnaire supports this attention to affordance com-
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Figure 7: Distribution of starting object choice of
subjects for the grasping action.

plexity. When asked open questions about whether they fol-
lowed a certain order or emphasized any objects, over half
of the subjects said no. However, several talked about ob-
jects being “boring,”“interesting,” or “fun.” Thus, structur-
ing complexity seems to be an intuitive approach to the task
of teaching, even if it was not a conscious effort.

5.1.3 People Start Simple
In addition to examples being proportional to complexity,
people start with simple examples, not complex one. Fig. 7
gives the distribution across subjects of starting object choice
for the grasp action. The green cube followed by the pink
cuboid are most popular, both of which have flat surfaces
making them relatively easy to grasp. The orange sphere
also has a higher rate than the other two objects for being
light and having a rough surface. The starting samples are
also easy in terms of location; 86% of the subjects started
by placing an object within Junior’s reach.

5.1.4 Structured in Object Chunks
The data provided by humans is also distinguishable from
the systematic data in the order in which objects are pre-
sented. People focus on one object at a time rather than
switching between objects. Moreover, 85% of the chunks
end with positive examples (examples in which the action
has some effect different from “other”) which is consider-
ably higher than the overall percentage of positive examples
(70%).

In the questionnaire, when asked about teaching strategy,
one person described this“chunks”concept, saying they stayed
with an object until something significant happened. Most
people claimed no strategy, but when asked“Did you present
the same object several times? Why?” everyone agreed they
did the chunking. Several described staying with one object
until succeeding to demonstrate the affordance. Thus peo-
ple provided key environmental scaffolding, focusing on one
object until achieving at least one positive example.

5.1.5 Pointing out Rare Affordances
Social learning provides the opportunity to see rare affor-
dances; outcomes that occur in very few object configura-
tions. For instance, opening the box occurs for the grasp
action in only one orientation and in a limited range of loca-
tions. Depending on the resolution with which the objects
are displaced in during the systematic exploration, the open-
ing effect could easily be left out of the non-social data set.
On the other hand if resolution is increased to insure the
effect is seen, the number of opening examples becomes rel-
atively very few since the number of non-opening samples

Figure 8: The basket affordance

are multiplied. Hence it is hard to learn a rare affordance
from systematic data.

A social setting can provide the adaptive resolution to over-
come this problem. Humans experiment with the box ob-
ject by varying the distance with very small steps within
the range that it can be opened but they provide sparse
samples outside this range. Similarly, they provide more
examples of the box being in its normal orientation com-
pared to other orientations in which it cannot be opened
(Sec. 5.1.1). This adaptive resolution becomes crucial with
increasing number or complexity of objects. For instance,
one of our subjects discovered the basket affordance while
experimenting with two objects: the bottom of the box (a
container) and a sphere (Fig. 8). When the sphere is placed
in front of the container, Junior grabs it and consistently
drops it into the container. Capturing this affordance with
a systematic experiment, would require experimenting with
combinations of two objects in different relative positions
and orientations. This would produce roughly 67,000 ex-
periments and approximately 5 of these would result in the
basket outcome.

On the other hand, social experiments may fail to capture
affordances that occur in the non-social case. For example
29% of the subjects did not notice the tipping effect of the
poking action on some objects, thus providing no examples
of it. Similarly, most subjects did not notice that Junior
could grasp objects placed very close to it. They placed
objects at a comfortable distance at which a more natural
grasp would occur (Fig. 6). These oversights may occur due
to people’s inexperience with the robot as well as the inex-
perience with the objects. Self-exploration can therefore be
important in discovering affordances that are not predicted
by the human. This points to the mutually beneficial rela-
tionship between self and social learning.

5.1.6 Help in Parsing Action Goals
A final observation about the social learning case, is that
people’s action can help the robot parse its own actions in a
goal oriented way. Our instructions explicitly asked subjects
not to interrupt Junior’s actions and informed them that the
end of an action is when its arms go back to their starting
position. We observed that this instruction was often vio-
lated. Instead of waiting, subjects started to reconfigure the
workspace as soon as the effect of the action was complete
or definite. For instance some subjects placed their hands
below a lifted object in order to catch it as it’s dropped,
taking it away before the action finished (Fig. 9(a)). Sim-
ilarly, when the action has no effect on the object several
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Figure 9: Subjects’ goal directed parsing of actions.
(a) Interrupting trial by handling the object before
action completes (b) Interrupting trial by taking
away object when it’s clear there will be no effect.

subjects repositioned it before the unsuccessful action com-
pletes (Fig. 9(b)).

The moments at which the person takes their turn and in-
terrupts the trial can inform the robot that the salient part
of the effect has already occurred. For the first example the
salient part is the lifting (the rising of the object in the visual
field) rather than the dropping, and for the second example
the salient part is when the arms are joined together in the
front and start moving upwards without the object.

5.2 How can the robot influence the teacher?
Our second research question deals with the output from
the robot to the human, investigating the effects of Junior’s
gazing behavior. We hypothesize that gazing will improve
the interaction by informing the subjects about error situ-
ations, speeding up their response and inducing the correct
response. We compare the gaze and no-gaze groups on the
average time to respond to an error and the response given
in an error case. Data from two subjects in which the error
case occurred only once are excluded in this analysis.

Our data suggests that the robot is able to use gaze as a
transparency device, communicating when and what it needs
assistance with. Gaze improves the interaction by reducing
the time for recovery from the error. We calculate recovery
time by subtracting the individuals’ average normal interac-
tion time, from the time they take to respond to error cases,
in order to reduce the effect of individual interaction speed
differences. The average recovery time of subjects in the
no gaze case is 13.57sec (SD = 12.01), whereas in the gaze
case it is 11.69sec (SD = 15.89) which was not a significant
difference, t(95) = −0.65, p > .05. However, our hypothesis
holds for the majority of subjects (%92). When one outlier
is removed from the gaze group the average recovery time
the for the this group becomes 5.93sec (SD = 11.27) and
the difference becomes significant, t(72) = −2.58, p < .05.
We believe these results are due to the distractions and num-
ber of error cases in the outlier subject’s experiment, future
work will confirm these results.

In order to further investigate the influence of the gazing
behavior on the teacher, we analyze the change of two mea-
sures over time after the first occurrence of gazing: average
number of error occurrences and number of gazes before the
human reacts. We find that both measures decrease in the
second half of the experiment (Fig. 10). This suggests that

1/4 2/4 3/4 4/4
0

10

20

30

40

50

P
e

rc
e

n
ta

g
e

 o
f 

e
rr

o
rs

1/4 2/4 3/4 4/4
0

0.5

1

1.5

2

2.5

A
v
e

ra
g

e
 #

 o
f 

g
a

z
e

s

Figure 10: (Left) Distribution of error cases and
(Right) average number of gazes before the subjects’
response over the four quarters of the experiment
duration.

people understand the error and get better at positioning the
object so less errors occur. Alternatively, it could be that
they learn that responding to the gazing by repositioning
the object solves the problem, even if they don’t exactly un-
derstand the problem. Either response leads to the desired
outcome from the robot learner’s perspective.

In the questionnaire, subjects were asked two questions about
gazing: whether Junior ever gazed at them and in which sit-
uations it did so. The first question revealed that all the
subjects in the gaze case noticed the gazing (even if it hap-
pened only once) and none of the subjects in the no-gaze
case confused Junior’s other head movements (during ob-
ject tracking or random search) to be a gaze directed to
themselves. This suggests the gazing behavior was notice-
able and distinct. Accordingly, subjects in the gaze case saw
the communication act and felt the need to respond in some
way. The fact that subjects could appropriately respond to
the gaze, even though they were not informed about the
behavior prior to the experiment, confirms that gaze is a
natural way to ask for assistance.

When error conditions occurred in the no-gaze case, subjects
kept waiting for Junior to do something, and hesitated to
move the object thinking it could start the action anytime.
Two experiments in the no-gaze case were interrupted by
the subjects asking for assistance, as nothing was happening,
and the experimenter had to remind them that the objects
need to be horizontally centered for Junior to act on them.
This did not happen with any subjects in the gaze condition.

When people in the gaze group were asked, “In what sit-
uation did Junior gaze at you?” none could precisely iden-
tify the problem. They said that it happened when Junior
couldn’t see the object or when Junior was confused. This
suggest that subjects were intuitively able to respond prop-
erly to solve the error without exactly knowing what it was.

Finally, we noticed that the robot could use the gaze behav-
ior to learn the kinds of assistance it can get from the human
partner, learning the causal relationship between a request
for assistance and the response. In the no-gaze group it
would be difficult to associate an error with a response given
by the human. The time after which an individual will sus-
pect an error can highly vary. On the other hand, responses
can easily be associated with gazes. In this respect the robot
could learn the effects of the gazing action in a social con-
text in a similar way that it learns the effects of grasping



Figure 11: The effect of gazing: three frames from
Junior’s camera captured at the start, middle and
end of the gaze, the effect of the gaze in this case is
repositioning of the object such that it is centered.

and poking. In a sense, it could learn the affordances of the
human teacher. For example, given a few perceptual expe-
riences like the one seen in Fig. 11, one could imagine that
the robot would learn that the effect of gazing at the human
is that an un-centered object becomes centered.

5.3 What is the Machine Learning impact?
Our third research question addresses the effect of social ver-
sus non-social exploration on the underlying Machine Learn-
ing process. We hypothesize that humans are effective teach-
ers, providing a compact data set that efficiently captures
the various object affordances. We analyze a specific exam-
ple of learning, using SVMs as affordance classifiers.

A two-class SVM is trained for each type of effect, using the
state of the object as the feature space and the affordance
(whether or not the action resulted in the corresponding
effect) as the target value. Separate SVMs are trained with
the social and non-social data sets, and test data sets are
obtained by randomly sampling equal numbers of positive
and negative examples from either the systematic or the
social data set. Thus, learned classifiers are compared with
two separate tests, one social and one systematic.

Fig. 12 compares the average successful prediction rate for
classifiers with four different training data sets: (i) the com-
plete set of examples collected systematically, (ii) the combi-
nation of examples provided by all 14 individuals, (iii) ran-
dom subsets of the systematic data (size equal to the average
number of examples given by one subject), and (iv) the data
sets obtained by individual subjects in the experiment.

Our first observation is that the complete data sets (system-
atic and combination of everyone) generally perform better
than the smaller data sets (random subsets and individuals).
This shows that the number of samples given by one indi-
vidual in a single sitting may not be sufficient for learning
everything. This points to the importance of self exploration
(for collecting large data sets with systematic experiments)
as well as long-term training by individuals (multiple ses-
sions) or having multiple teachers. Nonetheless, as observed
through the error bars some individuals were able to get
close to the performance of the complete data sets.

The social training sets perform better on rolling and open-
ing affordances in both test cases. This is a result of the
balanced nature of the data provided in the social case (Sec.
5.1.1). As these affordances are rare in the systematic data
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Figure 12: Learning results: Prediction success of
classifiers trained with the systematic (non-social)
data and the social data, on (Top) social test data
and (Bottom) systematic test data. Values averaged
over 10 randomly sampled test sets.

set, the non-social training results in pessimistic classifiers
that mostly predict a negative outcome. With more frequent
affordances such as lifting and moving, the social data set
is on par with the systematic training set or one is slightly
better depending on the test set.

We believe this result is related to what people focus on
during the experiment. While rolling and opening happen
rarely in the systematic experiment, because of the way it
was designed, they are obvious affordances to a person pre-
sented with spheres and a cylindrical box. Thus, they are
successfully taught to the robot in the social case. This is
a good example of how humans can indirectly transfer their
knowledge about the world to the robot. It may be difficult
for a robot to automatically devise an exploration strategy
to cover the affordances of the environment in a balanced
way, but humans can support robots by scaffolding the ex-
ploration, implicitly using their knowledge about the world.

Depending on the employed machine learning method, the
differences in the data acquired socially and non-socially will
impact learning differently. For example, an algorithm that
is sensitive to data presentation order may give different re-
sults when presented samples structured by a human partner
as opposed to a systematically or randomly ordered set. In
our case, learning performance was altered by differences in
the balance between positive/negative samples in the data,
as well as the sizes of the data sets. In order to improve
performance, a robot could use prior knowledge about char-
acteristics of the data to apply different learning methods
in social and non-social situations. Devising such adaptive
learning methods is an interesting future challenge.

6. CONCLUSIONS
Our goal is to explore Socially Guided Machine Learning,
viewing robot learning as an interaction between an embod-
ied Machine Learner and an everyday human partner. In
this paper we take the context of learning about objects



with a human teacher. Using the Junior robot platform,
we collect training data for SVM classifiers in two different
settings: Social–the interaction is structured by a human
partner; and Non-social–the robot is presented a systematic
set of object configurations to explore.

This experiment makes three primary contributions. First
we characterize the input from a human teacher in this ob-
ject exploration setting. We have six observations about
how the social data set differs from the non-social data set:
People have a more balanced set of positive and negative
examples. They intuitively structure the environment with
respect to complexity, both in number of examples per ob-
ject and order of examples. Social data sets have a greater
representation of rare affordances. And people’s actions in
the workspace can be used to infer action goals.

Having analyzed the input portion of the learning process,
our second contribution is in the output channels. With half
of our human subjects, Junior used a gazing behavior to in-
dicate errors. Our data suggests that Junior was successfully
able to use gaze as a transparency device to communicate
that it needed assistance, leading to faster error recovery.

Finally, our third contribution is in analyzing the impact
that a socially collected training set has on a supervised
learning mechanism. We trained SVM affordance classifiers
with the social and non-social data sets. People provided
small data sets, but they were focused and effective. The
social SVMs were better at predicting rare affordances since
people focused on these, and they performed on par with
non-social SVMs on the more common affordances.

Robots operating in human environments will likely need
to interact with everyday people to learn new things. Our
research in SG-ML provides insight and guidance into how
these systems should be designed to more appropriate match
how everyday people approach the task of teaching.
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