
Self-Improvement of Learned Action Models with Learned Goal Models

Baris Akgun and Andrea L. Thomaz

Abstract— We introduce a new method for robots to further
improve upon skills acquired through Learning from Demon-
stration. Previously, we have introduced a method to learn
both an action model to execute the skill and a goal model
to monitor the execution of the skill. In this paper we show
how to use the learned goal models to improve the learned
action models autonomously, without further user interaction.
Trajectories are sampled from the action model and executed
on the robot. The goal model then labels them as success or
failure and the successful ones are used to update the action
model. We introduce an adaptive sampling method to speed up
convergence. We show through both simulation and real robot
experiments that our method can fix a failed action model.

I. INTRODUCTION

There is a growing interest in deploying robot learning
from demonstration (LfD) systems in the real world. The
majority of the end-users of these systems will be naı̈ve in
the sense that they will not have robotics or machine learning
experience. This necessitates LfD algorithms that will be able
to work with naı̈ve user demonstrations.

In a typical skill learning from demonstration setting, an
action model is learned for executing the skill. In our user
studies of naı̈ve users teaching robots [1], we have observed
that during their demonstrations these users concentrate on
achieving the goal of the skill, rather than providing quality
demonstrations of how to do it. This makes it challenging to
learn successful action models from naı̈ve users.

Motivated by this, we have developed an approach to
learn a separate action model and goal model from user
demonstrations for a given skill [2]. Action models are used
to execute the skill and the goal models are used to monitor
the success of that execution. It was shown that all users were
able to teach successful goal models but only a subset of
them were able to teach successful action models. The goal
models were able to correctly label executions as successful
or not even in the case of suboptimal action models. In
this paper, we build atop this monitoring performance and
introduce a novel method for using these learned goal models
to guide self-improvement of the action model.

Our approach samples trajectories from the action model
and executes them on the robot. If the execution is deemed
successful by the goal model, it is used to update the action
model, else it is discarded. We want to improve the success of
the action model. We describe an adaptive sampling method
to speed up convergence and compare it with a non-adaptive
version. Our experimental results show that the learned goal
models can be used to improve the learned action model
beyond the initial demonstrations.

In our work, we utilize keyframes demonstrations, [1], [3]
to get data from users. Keyframes are sparse (in time) set of
sequential points that the teacher demonstrates to the robot.
Users can effectively use keyframes during demonstrations

Fig. 1. A teacher providing a kinesthetic demonstration of close the box
skill to the robot.

in the context of LfD. Furthermore, keyframes help the
users to provide more consistent demonstrations as well as
giving them a tool to highlight salient parts of the skill, thus
providing necessary information to build a good goal model.

II. RELATED WORK

In general, robots are difficult to program. In addition,
the needed programs may not be apparent before a robot is
deployed. These two are arguably the main reasons for the
field of LfD. There is a large body of work in the field and
a general survey can be found in [4].

Some difficult to program skills have easy to represent
goals or cost. In such cases, a reinforcement learning (RL)
approach is viable. However, traditional RL methods do not
scale well with high number of dimensions. Policy search
methods have been shown to be suitable for skill learning
with robots with high number of degrees-of-freedom (dof).
In most of these methods a potentially unsuccessful initial
policy is learned from demonstrations, which is then input
to the policy search method along with the reward function.
Surveys for RL in robotics can be found in [5], [6]. In our
work, we do not specify a reward function to the robot.

Another approach to skill learning, is inverse reinforce-
ment learning (IRL) [7] or similarly inverse optimal control
(IOC) [8]. In IRL, a reward or cost function is estimated from
demonstrations and then used to extract a policy. The main
idea behind the IRL approaches is that the reward function
is a better representation of the demonstrated skill than the
policy. Our goal learning idea is similar to the main idea
of inverse reinforcement learning (IRL); extracting a reward

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9994-1/15/$31.00 ©2015 IEEE 5259

Fig. 2. The LfD system. User demonstrates the skill with keyframes and
two types of data is extracted at each keyframe; motion data and object
data . The same algorithm is used to learn two distinct models from the
aforementioned data; an action model and a goal model. The learned action
model is used to execute the skill and the learned goal model is used to
monitor the execution. The monitoring output is used to update the action
model during self-improvement. The red box indicates the self-improvement
part of the system which is the main focus of this paper.

function from demonstrations.
A similar idea related to goal models and monitoring is

presented in [9]. The robot executes its learned skill, collects
sensory data and the successful executions are labeled by
hand. The robot then builds a Gaussian model for the
trajectories for each sensory state dimension, which requires
a high number of skill executions. These models are used
in hypothesis testing during future executions to monitor the
skill. In contrast, we use the sensory data obtained during the
skill demonstrations to learn a goal model without further
manual labelling and skill repetition.

III. ACTION AND GOAL MODELS

Our work concentrates on object-based manipulation skills
in which dynamics is not a major component of the goal. This
class of skills encapsulates many day-to-day activities (e.g.,
fetching items, general cleanup, aspects of doing laundry or
ironing, etc.). Keyframes are highly suitable for these skills.

The LfD system used in this work is depicted in Fig. 2.
This section provides a summary of our approach to learn and
use action and goal models. Refer to [2] for further details.
A. Data

The teachers physically guide the robot’s arm to provide
demonstrations as shown in Fig. 1, which is called kinesthetic
teaching. We utilize keyframes, which are sparse (in time)
set of sequential points, to get data from users. During
demonstrations, the teacher moves the robot to the desired
pose and marks a keyframe. Two types of data are recorded
at each keyframe; motion data and object data.

The motion data used to learn the action model is the end-
effector pose with respect to the target object. We represent
the end effector pose as the concatenation of a 3D vector as
the translational component and a unit quaternion (4D) as the
rotational component, resulting in a 7D vector, living in R7.
The end-effector poses are transformed to the object refer-
ence frame before being input to learning. This transformed
pose is called the action keyframe. A pose is projected
onto the space of rigid body transformations, SE(3), by
normalizing the quaternion part wherever necessary.

We use xd
i ∈ R7 to denote the ith action keyframe for the

dth demonstration, Xd =
{

xd
1 ,x

d
2 , . . . ,x

d
m(d)

}
to denote the dth

demonstration. The number of keyframes in the dth demon-
stration is denoted by m(d). Finally, DA =

{
X1, . . . ,Xn

}
is

the set of n action demonstrations.

(a) A snapshot of a keyframe from
the close the box skill.

(b) A snapshot of a keyframe from
the pour skill.

(c) A segmented box for close the
box skill.

(d) A segmented bowl for the pour
skill.

Fig. 3. Image snapshots as seen by the overhead camera.

The object data consists of features extracted from an
overhead RGBD camera output. We make two assumptions
about the objects and the environment: (1) the objects sit on a
plane (e.g. tabletop) and (2) the objects have relatively solid
color. We segment the object using the approach in [10] to
find spatial clusters of similar color.

After segmentation, we fit a rotated bounding box to the
object and use the pose of this box as the object pose. An
example of the segmentation and the bounding box results
can be seen in Fig. 3. After fitting this box, we extract generic
object features that include the bounding box coordinates
and orientation, cluster centroid, minimums and maximums
of the point cloud coordinates, average RGB values, average
hue, point cloud size, bounding box size, volume, area and
aspect ratio and bounding box area to volume ratio and
bounding box volume to point cloud size ratio. We map the
color values between 0 and 1. In addition we use the View
Point Feature Histogram (VFH) descriptors presented in [11].
with 15 bins per angle. We remove the viewpoint component.
The histogram related features are normalized proportional
to the total number of points in the histogram. The resulting
goal space is 71 (26+ 15× 3) dimensional, treated as R71.
This feature vector is called the goal keyframe.

We use zd
i ∈ R71 to denote the ith goal keyframe for the

dth demonstration, Zd =
{

zd
1 ,z

d
2 , . . . ,z

d
m(j)

}
to denote the dth

demonstration. The number of keyframes in the dth demon-
stration is denoted by m(d). Finally, DG =

{
Z1, . . . ,Zn

}
is

the set of n goal demonstrations.

B. Learning Action and Goal Models

Hidden Markov Models (HMM) are used to represent both
the action model and the goal model of the skills. Keyframes
lend themselves naturally to such a model since they can be
treated as sequential observations. We model the emissions

5260

Fig. 4. A depiction of the learning process. The model a represents a HMM
with states, non-zero transition probabilities and emission probabilities. In
addition, we learn prior and terminal probabilities.

as multivariate Gaussian distributions on the corresponding
state space (either the action space or the goal space).

The HMM’s are parameterized as follows; θ =
{π,ζ ,A,Φ} with n number of states, where π is the
prior probability vector, ζ is the terminal probabil-
ity vector, A is the state transition matrix and Φ =
{µ1,µ2, . . . ,µn,Σ1,Σ2, . . . ,Σn} is the set of means and co-
variance matrices of the emission distributions. The terminal
probabilities represent the likelihood of states being the
last state for the HMM. The states with non-zero prior
probabilities are called the prior states, Sπ = {sk : π(sk)> ε},
and the states with non-zero terminal probabilities are called
the terminal states, Sζ = {sl : ζ (sl)> ε}. The θA represents
the action HMM and the θG represents the goal HMM.

The HMMs are trained with the Baum-Welch algorithm
(BWA). Bayesian Information Criterion (BIC) is used to
select the number of states of the HMMs. We run BWA 10
times given a number of states and select the model with the
highest likelihood to calculate BIC. The models are learned
from multiple demonstrations. An overview of the process is
depicted in Fig. 4. The action keyframes are used to learn
the action model and the goal keyframes are used to learn
the goal model, i.e. θA← BWA(DA) and θA← BWA(DG).

C. Action Execution and Goal Monitoring

The skill is executed by generating a trajectory from the
action HMM. The first step is to generate a state path by
finding the maximum likelihood path between the prior and
terminal states by using the transition matrix (AA).

The next step is the sample procedure, in which we sample
the emission probabilities along this state path. If, instead
of sampling, the means of the emission probabilities are
used, this become the optimalPath procedure. Both of these
procedures result in a sequence of object relative end-effector
poses. To execute the skill, the poses are transformed back
to the robot frame, given the current object frame (ρob j). The
transformed poses are called the execution keyframes.

A 5th order spline is fit between the execution keyframes
to create a trajectory to be executed on the robot, which
we call the execute procedure. During execution of the skill,
the robot extracts object data at each execution keyframe it
passes through to get a resulting observation sequence Q ={

q1,q2, . . . ,qp
}

.
In the monitoring step, we use the goal HMM to calculate

the likelihood of this observation sequence Q, p(Q;θG) and

threshold it to decide whether the executed skill succeeded
or not i.e. the skill is deemed successful if log(p(Q;θG))>
τs. The terminal probabilities are included in the likelihood
calculation to make sure that the skill has finished.

IV. SELF-IMPROVEMENT

There are cases where end-users are not able to teach
acceptable skills to the robot. In these cases, an extra self-
improvement step is needed to have an acceptable model of
the skill.

In this section we introduce a self-improvement method
that can find an acceptable skill model. We have seen that
naı̈ve users are able to teach successful goal models even if
their action models are not entirely successful. In our method,
we leverage these successful goal models to guide the self-
improvement process. This alleviates the need to program a
reward function, which would be quite difficult for typical
end-users to do or may not be possible at all.

A. Overview

The approach introduced in this work starts from the
learned action model, executes sampled trajectories on the
robot and utilizes the output of the goal model to update the
action model. The main assumption is that there is a success-
ful goal model available after the initial user demonstrations.

The algorithm is presented in Alg. 1. It is an iterated
algorithm that takes the user action demonstrations DA, and
the HMM models, θA and θG as inputs. For a given iteration,
the robot samples from the action HMM (θA), executes the
obtained trajectory and monitors it (lines 7-9), as described in
Sec. III-C. If the execution is deemed successful, the sample
is added to the set of successful examples, σ (lines 11-13)
and the monitoring result is stored in G (line 10). After a
number of iterations (nr), the robot re-learns the action model
using σ as described in Sec. III-B. This overall process,
which we call an episode, is repeated for a predetermined
number of times (ne) but a stopping condition can be used.

Successful sampled trajectories are more relevant to learn-
ing the skill than user demonstrations since they are executed
by the robot and user demonstrations can potentially be bad.
Hence, the user demonstrations are “forgotten” if there are
sufficient successful samples (lines 15-17).

We use two version of the sampling step of this algorithm
(line 7). In the non-adaptive case, we directly use normal
sampling, as described in Sec. III-C. In the adaptive case,
we modify HMM sampling by incorporating a sampling step
which is calculated according to the success of the last w
samples (lines 5-6). This is introduced in the next section.

B. Adaptive Sampling

The self-improvement method we describe is essentially
a search guided by the goal model and we introduce an
adaptive sampling approach to adjust this search. We assume
that the best opportunity for learning is on the border of
success and failure, i.e. point of maximum entropy. In other
words, we want to fail and succeed the same number of
times during our search to maximize the information gain.
One assumption we make is that the learned action model
is either within the boundary of success or close enough to

5261

Algorithm 1 Self-Improvement(θG,θA,DA)
1: σ ← DA
2: G← [0,1, . . . ,0,1]
3: for 1 to ne do
4: for 1 to nr do
5: r = Σw

i=1(G[(end−w+ i) : end])/w
6: λ = f (r,h,α)
7: T = sample(θA,λ)
8: Q = execute(T,ρob j)
9: g = monitor(θG,Q)

10: G← g
11: if g == 1 then
12: σ ← T
13: end if
14: end for
15: if f orgetUserData(G,k) then
16: σ = σ \ DA
17: end if
18: θA = learn(σ)
19: end for

the boundary to be found. This is similar to the assumption
of the initial model being within the basin of attraction of a
successful local minima in policy search methods.

A multiplication factor for the covariance matrices, λ ,
is added to the sample procedure described in Sec. III-
C. Instead of sampling from N (µ,Σ), we sample from
N (µ,λΣ) to get execution keyframes, where λ ≥ 1. This
allows the method to scale its search to be between the
vicinity of the current model and farther out.

Eq. 1 shows the calculation of the step size parameter (line
6).The r represents the success ratio of the last w samples as
calculated at line 5 of the Alg. 1, hence 0≤ r≤ 1. Note that
for r = 0 , the equation is undefined but as r→ 0, f (r,h,α)→
1+α . The G parameter is initialized (line 2) with a set of
equal number of 1′s and 0′s to avoid r being over-sensitive to
initial sampling results. The α parameter is responsible for
the maximum step size and h is responsible for the width of
the function. The output of this function for a few example
parameters is shown in Fig. 5.

f (r,h,α) = 1+α

(
1− exp

(
−

log2(1−r
r)

h

))
(1)

For 0 ≤ r ≤ 1, the Eq. 1 is symmetric, non-negative and
1 ≤ f (r,h,α) ≤ 1+α . It reaches its minimum at r = 0.5
and maximum at r = 0 and r = 1. These properties result in
the self-improvement method to look farther out if the latest
sampling results are similar and to stay within the vicinity
of the current action model when the sampling results are
different. This forces the algorithm to spend more time close
to the success/failure boundary, as previously motivated.

V. EVALUATION

The experimental setup can be seen in Fig. 1. The robot
used, Curi, has two 7-dof series-elastically actuated arms.
The arms have software gravity compensation to aid in
kinesthetic teaching. There is an overhead ASUS Xtion Pro

Fig. 5. The step-size parameter (λ) versus sampling success ratio for
various values of α and h as calculated by the Eq. 1.

(a) The robot in simulation (b) The perception in simulation

Fig. 6. The simulated environment.

LIVE RGBD camera for perception and the Point Cloud
Library 1 is used to process point cloud data.

We use both simulation and real robot experiments to eval-
uate our approach. The evaluation starts by demonstrating
skills to the robot and learning goal and action models. Then,
these models are input to the self-improvement algorithm
where the action models are updated. In both cases, the real
robot is used to provide demonstrations and the simulated
robot is programmed to mimic the real one.

A. Simulation Results

The simulator used is Gazebo 4.02. Screenshots from the
simulation and object segmentation (see Sec. III-A) from
simulated data can be seen in Fig. 6. We use the close the
box (CLB) skill to evaluate our approach in simulation; in
which the goal is to close the lid of an open box.

Our method is tested with two initial action models, one
successful (success rate 100%) and one unsuccessful (success
rate 40%). Rather than purposely providing bad demonstra-
tions, bad demonstration data is generated by modifying
good ones; by adding a constant bias of 0.027m to the vertical
and horizontal dimensions of the second keyframe, forcing
it away from the box. For reference, the box dimensions are
0.165m× 0.108m× 0.103m. The unsuccessful action model
is then learned from this modified data. The goal models are
shared for both action models.

1http://pointclouds.org/
2http://gazebosim.org/

5262

(a) Success rates for episodes {1,5,10,15,20}
for the Unsuccessful Initial Model

(b) Coverage for the Unsuccessful Initial Model (c) Coverage for the Successful Initial Model

Fig. 7. Simulation: The success rates and the coverage of the action models versus iterations of the self-improvement algorithm for the close the box
skill. The vertical dashed lines represent the point of forgetting the user data.

We test our approach under multiple parameter instantia-
tions of the Eq. 1. We fix the width parameter to be constant,
h = 1.75 and vary the success ratio window size, w and the
maximum step size, α . The list of parameters we use is
[α = {0.5,1},w = {5,10}],. We discard the user data after
getting k = 10 successful samples (Alg. 1, line 16). We run
the the algorithm for ne = 20 episodes with nr = 5 iterations
each. The goal model log-likelihood decision threshold is
set at τs = −600. This threshold is based on our previous
experience and is not set using data from the current work.
In addition, we run our algorithm without adaptive sampling
and compare it against the adaptive sampling version.

The results for the close the box skill is given in Fig. 7. Af-
ter each episode, we learn a new HMM. The Fig. 7(a) shows
the average success over 5 executions for a selected set of
learned HMMs. Eventually, all the instances of the algorithm
reach a successful (≥ 80%) state within 10 episodes.

The interesting result is that the case without adaptive
sampling (normal sampling) also managed to improve the
skill model. The results for the successful initial model
is not shown, since, they are all 100%. One assumption
of our method is that the initial action model is not too
far from the achieving the skill (see Sec. IV-B). In this
case, successful skill executions were within the variance of
the initial unsuccessful goal model and hence were able to
recover an acceptable action model. We expect the adaptive
sampling to have more impact when the initial model is
farther away, which is actually the case for robot trials.

The volume of its emission probabilities is an indicator
of the state space coverage for an action model. We take
this volume to be the volume of the hyper-ellipsoids defined
by the covariance matrices and define coverage of an action
model to be the sum of the determinants of the emission
covariance matrices. The Fig. 7(b) and Fig. 7(c) shows the
coverage of the learned models after the user data is for-
gotten, as the user data for the unsuccessful demonstrations
is un-purpose different than successful sampled trajectories
and skews the results. The figures show that the adaptive
sampling is faster in increasing the coverage and as a result
faster at searching the state space.

B. Robot Results

We evaluate our method on the real robot using two
skills: the close the box (see Fig. 3(a)) skill, similar to the

simulation case and the pour (see Fig. 3(b)) skill, where
the goal is to pour uncooked macaroni from a cup to a
bowl. The algorithm is run for ne = 10 episodes with nr = 5
iterations each. We fix the parameters of Eq. 1 to be [α =
0.5,w= 10,h= 1.75] based on the simulation results as these
parameters resulted in a high success rate and good coverage.
We discard the user data after getting k = 10 successful
samples. In the interest of saving space, we only present the
results of success rates with an initial unsuccessful model.

We teach a successful goal model using 10 demonstrations
for both skills but start the self-improvement with unsuccess-
ful action models. For close the box skill, we modify the
demonstration data to result in an unsuccessful action model,
similar to the simulation case. The second keyframes are
pushed away by 0.03m in horizontal and vertical directions
away from the robot and the third keyframes are pushed
away from the box by 0.03m in the vertical direction. For the
pour skill, we provide 10 bad demonstrations to the robot.
The resulting unsuccessful action models has the cup 1-2
cm away from the bowl and is not tilted enough to pour the
macaroni pieces. Both of the initial action models had 0%
success rate. To evaluate the approach, the action models are
executed 5 times after each episode. The resulting success
rates are shown in Fig. 8.

For close the box skill, there are differences between
the simulation and robot experiments. The robot experiment
starts from a completely failed model (success rate 0%),
whereas simulation experiment starts from a partially failed
model (success rate 40%). Both of the robot experiment
conditions reached a successful action model faster, despite
the fact that they start from a worse one. There are two main
reasons for this. The first is that the covariance of the robot
action models are higher, which results in a larger search
space. The other is that it is actually easier for the real robot
to close the box, given that the robot is compliant and has
soft fingers, which lets it better interact with objects.

The adaptive sampling reached a successful action model
faster. The reason being that the initial action model was
farther away from the successful samples than in the sim-
ulation experiment, as evidenced by the initial success rate
of the model. In this case, adaptive sampling was able to
sample successful executions faster than the non-adaptive
case. Adaptive sampling takes better advantage of a wider
variance than the non-adaptive case; the more variance the

5263

(a) Close the box (b) Pour

Fig. 8. Real robot: The success rates for the close the box and the pour
skill after each episode for 5 trials.

model has, the more the adaptive step will grow it.
The results for the pour skill is closer together (Fig. 8(b).

Both the adaptive and the non-adaptive methods were able to
improve the action model and did so after 3 and 4 episodes
respectively. As expected, the adaptive sampling was slightly
faster at improving the skill.

We also evaluate the success of the goal models since the
approach depends on successful goal models The sampling
and evaluation of the skill resulted in 100 iterations of
monitoring for each skill. The close the box goal model
had 93% recognition rate and the pour goal model had 91%
recognition rate.

VI. DISCUSSION

Having a successful goal model is a pre-requisite of our
self-improvement method. We have shown that such goal
models, along with an initial action model, can be learned
from user demonstration. We have also shown that a failed
action model can be improved by using the goal models.

The method we introduced can be used with both normal
and adaptive sampling. Our results suggest that the adaptive
approach is more useful when finding an acceptable action
model when the initial one is not successful. The difference
is more apparent in the real world.

The presented method works only with a single object.
Adding reference frames to each keyframe, either automati-
cally [12] or with user interaction [13], will be necessary to
handle skills with more than one object.

Similar to the IRL methods, the presented method makes
use of only demonstration data to get an intermediate reward
representation. This representation can be used to find a
policy or even used in planning. However, the structure of
the problem we are dealing with does not immediately yield
itself to the existing IRL approaches. We are utilizing key-
frame demonstrations which result in sparse rewards whereas
IRL methods expect continuous rewards. In addition, the
nature of the skills we are interested in might have binary
outcomes (e.g. close the box). We are more interested in
finding acceptable skill models that have a large space
coverage, whereas the IRL methods assume the goal is to
find an optimal policy. Our policy space is different than the
reward space and our reward space is very high dimensional.
While these issues are not insurmountable for IRL, they are
not addressed by existing algorithms in the literature.

There are other avenues for improvement. Currently, the
failed executions are not utilized. However, they can be used

to deter the method from sampling near the failed regions.
The method of forgetting the user demonstrations during self-
learning is ad-hoc in this paper. Other ways, such as utilizing
information measures, can provide a more elegant solution.

VII. CONCLUSIONS
We have introduced a novel approach to self-improvement

of skills learned from demonstration. This approach builds
on observations of naı̈ve users being goal oriented. Goal and
action models are learned using demonstration data. Then,
goal models are used in a self-exploratory way to improve
the action models without further user interaction.

Our results suggest that the introduced method can be
used to improve an unsuccessful action model. We further
show that adaptive sampling is better to increase the speed of
convergence, especially for the real robot case. We provide
additional evidence to support that successful goal models
can be learned, which is crucial for the introduced method.

The main purpose of an LfD approach is to learn success-
ful skill models. To the best of our knowledge, there is no
LfD approach that can learn skill models for high dimen-
sional robots (both action and sensing wise) and improve
them without further user interaction, programming and/or
heavy prior knowledge for object centric manipulation skills
and ours is the first one.

REFERENCES

[1] B. Akgun, M. Cakmak, J. Wook Yoo, and L. A. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective,” in Intl. Conference on Human-robot interaction (HRI),
2012, pp. 391–398.

[2] B. Akgun and A. Thomaz, “Simultaneously learning actions and goals
from demonstration,” Autonomous Robots, Online First, 2015.

[3] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-based
learning from demonstration,” Intl. Journal of Social Robotics, vol. 4,
no. 4, pp. 343–355, 2012.

[4] B. Argall, S. Chernova, M. M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The Intl. Journal of Robotics Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[6] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics.” Foundations and Trends in Robotics, vol. 2, no.
1-2, pp. 1–142, 2013.

[7] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the 21st Intl. Conference on Machine
Learning (ICML), 2004, pp. 1–8.

[8] N. Ratliff, B. Ziebart, K. Peterson, J. A. Bagnell, M. Hebert, A. K.
Dey, and S. Srinivasa, “Inverse optimal heuristic control for imitation
learning,” in Proc. AISTATS, 2009, pp. 424–431.

[9] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in 2011
IEEE Intl. Conference on Robotics and Automation (ICRA), 2011.

[10] A. J. B. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient
organized point cloud segmentation with connected components,” in
Workshop on Semantic Perception, Mapping and Exploration, 2013.

[11] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in IEEE/RSJ Intl.
Conference on Intelligent Robots and Systems (IROS), 2010.

[12] S. Niekum, S. Osentoski, G. D. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto, “Learning grounded finite-state representations from
unstructured demonstrations,” Intl. Journal of Robotics Research,
vol. 34, no. 2, pp. 131–157, 2015.

[13] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations,”
in Robotics: science and systems, 2014, pp. 48–56.

5264

