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ABSTRACT
In this work we consider the problem of nonlinear system

identification, using data to learn multiple and often coupled
parameters that allow a simulator to more accurately model a
physical system and close the so-called reality gap for more ac-
curate robot control. Our approach uses iterative residual tun-
ing (IRT), a recently-developed derivative-free system identifi-
cation technique that uses neural networks and visual observa-
tion to estimate parameter differences between a proposed model
and a target model. We develop several modifications to the
basic IRT approach and apply it to the system identification of
a 5-parameter model of a marble rolling in a robot-controlled
labyrinth game mechanism. We validate our technique both in
simulation— where we outperform two baselines—and on a real
system, where we achieve marble tracking error of 4.02% after
just 5 iterations of optimization.

1 INTRODUCTION
A robot operating a complex system or under unknown dy-

namics can greatly benefit from an accurate model or simula-
tion of its environment. Many modern robot and system control
techniques such as model-predictive control [1] require a model.
Even for model-free techniques, a simulated model can be use-
ful for safely learning new robot policies using techniques evo-
lutionary strategies [2, 3] or reinforcement learning [4]. Accu-
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rate simulations can also be useful as an aid for teleoperation
or as predictive tool, as in the case of digital twins [5], which
are simulated surrogates of complex systems. In all these in-
stances, simulation accuracy is important, since inaccurate mod-
els can harm task performance and even small errors can often
compound over time. The difference between the simulated and
real response to a given input is known as the reality gap. While
several works have studied the reality gap [6–10], narrowing or
closing it remains a significant challenge. System identification,
which learns a model that matches measurements of the sys-
tem state, can help close the reality gap significantly by simply
choosing appropriate parameter values for a simulated system
and robotics researchers have recently taken more interest in the
topic [11, 12]. A new technique called iterative residual tuning,
or IRT, uses a neural network and simulated pretraining to per-
form efficient and accurate parameter estimation from minimal
real-world observation (measurement). In prior work, IRT was
shown to work on both simulated and real-world system identi-
fication problems, but only considered the problem of tuning a
model with a single parameter, whereas most models have multi-
ple (and likely coupled) unknown parameters that must be tuned.

In this work, we use IRT to perform system identifica-
tion and generate a simulated version of a physical mechanism
manipulated by a robot: a marble rolling freely in a wooden
labyrinth game. We tune five different physical parameters in
the simulator, many of which would be difficult to measure di-
rectly on the physical system. We perform one experiment en-
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FIGURE 1: Left: the physical labyrinth used in this study. Right:
our simulated surrogate labyrinth used to identify multiple sys-
tem parameters.

tirely in simulation to provide a detailed look at parameter tun-
ing performance, and another to tune the simulator to match the
physical system. We also make several adjustments to the base
IRT method that allow it to perform well in the more difficult
multiparameter case, including additional randomized data for
pretraining, parameter scaling to normalize network inputs, and
decaying-rate gradient descent to mitigate noisy gradient estima-
tion.

We demonstrate that IRT can successfully tune multiple sim-
ulation parameters using real-world data and outperforms three
competing approaches, including an evolutionary strategy ap-
proach used in prior work [10] to characterize the same mech-
anism. Our method outperforms competing approaches, achiev-
ing a lower mean absolute state tracking error when modeling the
real system as well as the lowest observed parameter error in the
simulation experiment.

2 RELATED WORK
Our work builds on developments in the field of system iden-

tification and dynamics model learning.

2.1 System Identification
System identification [13, 14] is the process of selecting a

model to fit observed data from a dynamical system. It is one
way of narrowing the reality gap, and has usually been performed
via maximum likelihood techniques, such as least-squares fitting
[13, 15, 16]. This approach becomes less useful as the modeled
system becomes more complex and especially when the input-
output relationship is nonlinear. These statistical techniques can
also require large data sets to ensure an accurate estimate of the
system parameters. Newer system identification techniques have
considered data-driven optimization techniques that do not rep-
resent the relationship between inputs and outputs in a closed
form. They have shown that in this problem formulation, system
parameters can be directly estimated by neural networks [12] or

by using global optimization techniques such as entropy-based
search [6, 11]. Another line of research has developed a pseudo-
maximum likelihood estimator for nonlinear system identifica-
tion based on Monte Carlo simulations [17], although they do not
evaluate their approach on a physical system. Finally, IRT [18],
described in more detail below, is a recently-developed gradient-
free system identification technique which we use and extend in
this work.

2.2 Learning Dynamics Models
Our work is also similar to related research in learning mod-

els of dynamic and articulated objects using machine learning.
Several researchers have predicted the motion and physical pa-
rameters of objects using observed interaction data and tech-
niques such as neural networks [19–22], Gaussian processes
[23], and linear regression [24]. These approaches are gener-
ally not data-efficient, as they encode no notion of object dy-
namics and must learn the laws of physics from scratch. Other
approaches, including IRT, combine neural networks with simu-
lation [25–27] to take advantage of both a flexible learned repre-
sentation and explicit physics prediction.

Researchers have studied the control and modeling of the
same labyrinth game considered in this work [28], where one
particular work specifically considered the problem of closing
the reality gap for this system [10]. However, it does not con-
sider the modeling of the system itself but rather optimizes the
PID parameters of servo motors which turn the labyrinth’s con-
trol knobs; the other parameters of the simulation were hand-
tuned. This work also used custom instrumentation to allow ab-
solute measurement of the control knobs’ position in relation to
the commanded position, simplifying the system identification
problem, and tuned only one motor at a time, whereas we use a
technique which allows us to learn parameter values for the en-
tire system directly from the resulting motion of the marble in
the labyrinth.

3 PROBLEM STATEMENT
The goal of this effort is to optimize the parameters of a sim-

ulated version of a wooden labyrinth game operated by a robot
so that the simulated behavior better matches that observed in
the real world. We do not instrument the board itself in any
way, and tune using only visual observations of the system dur-
ing interaction. Mathematically, we seek a vector of parameters
ζ which minimizes the mean state error (averaged over all state
variables) between the real system fζtrue(x,u) and the simulated
system gζ (x,u) as measured over τ timesteps:

argmin
ζ∈Z

1
τ

τ

∑
t=1

∣∣ fζtrue(xt+1,ut−1)−gζ (xt+1,ut+1)
∣∣ (1)
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In short, we wish to close the reality gap as much as possible.
Furthermore, we wish to perform this minimization with as little
data from the real system as possible.

3.1 The Labyrinth Game
The labyrinth (Fig. 1) is a dexterity-based game where the

player must guide a marble through a series of maze-like walls
without it falling into one of the marble-sized holes in the game’s
surface. The player guides the marble by turning two knobs,
which tilt the surface along the X and Y axes via an internal
pulley mechanism. In this study, we consider a labyrinth model
sold by the Brio company. This particular model is functionally
identical to the one used in prior studies [10].

In our case, the “player” is two Kinova Jaco2 7 degree-of-
freedom robot arms with Robotiq 85 2-finger grippers, as shown
in Fig. 2. Two important skills for completing the labyrinth are
the ability to understand how the marble moves in response to
the surface’s tilt, and the dexterity to turn the knobs correctly to
obtain a desired motion. In software, we provide motion pre-
diction by using an off-the-shelf physics engine, and we learn
dexterity by using system identification to match the physics en-
gine to the real system. In this study, we are interested only in
observing marble motion and using it to model the overall sys-
tem parameters. Therefore, we replace the game surface with a
smooth flat plane, allowing the marble to roll anywhere in the
labyrinth freely. This allows us to focus on the system identi-
fication problem, rather than the control and planning problem
of avoiding holes and walls in the labyrinth, while also keeping
in mind the future development of control strategies and game-
playing policies.

In order to build an accurate simulation of the labyrinth, we
must estimate several different parameters. Some parameters,
such as the size of the labyrinth board and the mass of the mar-
ble, are easy to measure directly. However, other important pa-
rameters are more difficult to measure:

1. The internal pulley mechanism, which is imprecise and con-
tains a spring (to ensure tension) results in an effective gear
reduction between the input knobs and the board angle,
which is difficult to measure precisely without instrumenta-
tion such as rotary encoders. The gear reduction also differs
for each knob.

2. The coefficient of rolling friction of the marble is extremely
important, since it determines the angle that cause marble
motion. It is also difficult to measure without a special
experimental apparatus. Even if the correct value could
be measured, because of how contact dynamics are imple-
mented in physics engines [29], using the true friction value
may not actually provide realistic behavior.

3. The software system used to drive the robots which operate
the labyrinth causes a significant control lag, where each in-
put command takes hundreds of milliseconds to be applied

FIGURE 2: Our experimental setup.

to the actual system. This control lag should also be repre-
sented to achieve simulator accuracy and represents another
tunable parameter.

4. Because we tune using visual observations rather than di-
rectly measured states, we must manage sensing errors. In
particular, the exact position of the marble is difficult to mea-
sure in 3D without knowing the angle of the labyrinth sur-
face (which is in turn dependent on the effective gear reduc-
tion another unknown parameter). Measuring the 2D posi-
tion of the marble (in the image plane) will present issues
due to parallax—as the table tilts, the marble’s 2D position
will change, and this change also depends on the effective
gear reduction. As described below, this discrepancy can
be managed by adding another learnable parameter to the
model: observation scaling.

4 THEORY: ITERATIVE RESIDUAL TUNING
To estimate the tunable simulator parameters listed above,

we use the IRT system identification technique [18]. The pro-
cess begins with choosing a set of proposed parameters ζP and
using them to construct a proposed model (i.e., an untuned sim-
ulator). IRT generates a time series of observations oP from the
proposed model and compares them with observations oT gen-
erated from the target model, which could be another simulator
(for evaluation purposes) or the physical system we are seeking
to identify. The observations are assumed to be a function of the
underlying system state and the model parameters, and are used
to estimate the difference in parameters between the two mod-
els. The parameter difference ζT − ζP is estimated by a neural
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network hθ (oPn ,oTn) = ∆̃ζk ≈ ζT − ζP, which is pre-trained on
a large dataset of pairs of simulation for which the difference in
parameters is known. The estimated difference is added to the
current proposed parameters so that they better match the target
parameters, and the new proposed model can be used to gen-
erate a new set of observations for additional tuning in another
iteration. This procedure can be repeated until the proposed pa-
rameters ζP converge (ideally to a value very close to the target
parameters ζT .

argmin
θ

N

∑
n=1
‖(ζPn +hθ (oPn ,oTn))−ζTn‖+λ‖θ‖2 (2)

In prior work, the authors introduce a neural network called
TuneNet [18] to perform this estimation, and train it using
stochastic gradient descent. The λ term in Eq. (2) is a regu-
larization constant used to prevent the network from overfitting.

In IRT, the parameter gradient, or the difference in parame-
ters with respect to the observations, is estimated entirely from
data rather than calculated in a closed-form fashion. This makes
IRT a derivative-free optimization method that is both data-
efficient and does not require a closed-form expression for the
system being optimized.

In previous work, IRT was shown to outperform two other
derivative-free optimization methods, CMA-ES and Entropy
Search, in terms of accuracy and data efficiency. However, these
results only considered the problem of tuning a model with a sin-
gle parameter. Adding more dimensions to the parameter estima-
tion problem increases the size of the search space exponentially.

5 APPROACH
To use IRT to estimate labyrinth parameters, we produced

an (untuned) simulation of the labyrinth to use as the proposed
model and made modifications to the IRT framework.

5.1 Simulation
The simulator we used for both experiments was a custom-

designed virtual representation of the labyrinth written using the
PyBullet simulation library (see Fig. 1. As described above, the
size of the labyrinth board, the marble radius, and the marble
mass were determined via direct measurement and held fixed,
and the other parameters were configurable for each simulated
run. We did not model the exterior or the interior tilt mechanisms
of the labyrinth but instead rotate the simulated board surface
directly in accordance with the input and gear reductions. For
visual tracking, we use a slightly larger colored marble (diameter
13.7mm) instead of the one supplied with the labyrinth.

5.2 Inputs, Observations, and Parameters
We learn to estimate parameter differences using a neural

network similar to TuneNet. We pretrained the network using
10000 pairs of simulated samples, each of which have a random-
ized set of parameters.

The five tunable parameters discussed above are defined and
given range limits below.

1. Effective Gear Reduction (X-Axis) px: Given some control
knob angle θx (expressed in radians), the board angle was
calculated as θboardx = θx∗ px. Range: [0, 0.1], unitless. This
small range was chosen based on empirical observation—
the pulleys are designed so that a large change in control
knob angle causes on a small change in the overall board
angle.

2. Effective Gear Reduction (Y-Axis) py: As above, although
note that the gear reduction need not be the same for each
axis due to the internal geometry of the pulley mechanism.
Range: [0, 0.1], unitless, determined as above.

3. Marble Rolling Friction µroll : the rolling friction coefficient
of the marble rigid body. Set directly and handled internally
by the physics simulation. Range: [0, 0.001], unitless, se-
lected empirically based on rolling friction values often used
in literature and software documentation.

4. Time scale pt : after each timestep, the simulation is run
for round(pt) physics updates, each representing 1/240s =
4.17ms of simulated time. This parameter is inserted to al-
low for “time warping” within the simulation, which may be
necessary to accurately match how actions are carried out on
the physical system. Range: [0, 50] timesteps = [0, 208]ms.
Chosen based on assumed 5Hz minimum control rate for the
real system.

5. Observation scale po: To account for slight discrepancies
between the real and simulated labyrinth sizes, and any ob-
servation differences in the real world due to parallax, the
ground truth observation was scaled by a small amount.
Range: [0.8, 1.2], unitless, chosen empirically.

For each simulated sample, the input to the system at each
timestep was the control knob angle. For each sample, we con-
ducted a 100-timestep rollout. During each rollout, we moved
both control knobs throughout a full period of sinusoidal motion
motion according to Eq. (3), where t is the current timestep and
θx and θy are the rotation angles in radians about the x and y axes
respectively.

θx = 0.1sin(
t

200π
);θy = 0.1cos(

t
200π

) (3)

At each timestep, the two-dimensional observation from the
simulator was the ground truth position of the marble. This posi-
tion was normalized to the range [-1, 1] by dividing by the edge
length of the board, as well as multiplied by the observation scale
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factor (see below). This 200-dimensional observation (X and Y
marble positions at each of the 100 timesteps) are passed into the
tuning network, which generates a 5-dimensional output repre-
senting the estimated difference for each of the 5 model parame-
ters.

5.3 Training Modifications
We made a number of key modifications to allow IRT to

perform well on this more difficult problem.
In the original IRT work, the procedure was used to tune

parameters (coefficient of restitution and the mass of a block)
which naturally ranged from 0 to 1. In our problem, the differ-
ent parameters have significantly different magnitudes, so before
passing them to the neural network, we normalize all of them
from the ranges listed above to the range [0, 1] to make training
easier and to not incentivize the network to tune some parameters
more aggressively than others. When the parameters are supplied
to the simulator, they are re-transformed back to the ranges listed
above.

During tuning, a poor initial proposed parameter could cause
the tuning process to diverge. To prevent this, we clipped the
possible parameters to the ranges listed above. We also added
a step size decay, β = 0.85, to the parameter update at each
step to improve convergence at later tuning iterations: ζpk+1 =

ζpk +β k∆̃ζk. We found that this change had no adverse effect for
purely simulated experiments, but was very important when tun-
ing to match the real system, where the estimated gradient had a
large amount of noise.

Our network architecture was identical to TuneNet, except
that it used a larger hidden layer size of 256. Finally, we ob-
served that using an Adam optimizer (learning rate 3e-4) per-
formed better than stochastic gradient descent for this problem,
and also allowed us to remove the regularization coefficient λ

from the loss function.

6 EXPERIMENTS
We performed two experiments to validate IRT for this sys-

tem. The first experiment, which was entirely simulated, mea-
sured the parameter tuning accuracy directly. The second experi-
ment tuned a simulator to match the real world and measured the
accuracy of the predicted marble state.

Both experiments used the same trained neural network and
parameter update procedure described above.

6.1 Experiment 1: Simulated Validation
In this experiment, we tested the ability for IRT to tune one

simulation to match another. Using simulations for both the pro-
posed and target models allowed us to measure the parameter
estimation error, since we have access to ground truth for both
models.

We generated a test dataset of 10 randomly sampled param-
eter values, which were used to produce 10 target models and as-
sociated observations using the same sinusoidal inputs described
above. For each of the 10 target models, we selected a random
proposed model from the same parameter space and attempted to
tune this model to match the target model.

We compare our IRT implementation to two other baselines.
The first baseline, “direct prediction,” is a neural network trained
to predict parameters from the target observation alone. We con-
structed this baseline using a neural network that takes only one
set of observations as input but is otherwise identical to the net-
work we used for IRT, and training over the same dataset as the
full network.

The second baseline is covariance matrix adaptation evolu-
tion strategy, or CMA-ES [3]. This is a gradient-free optimiza-
tion technique, and is an updated and improved version of orig-
inal (5+100) ES optimization used to characterize this labyrinth
system in prior work [10]. CMA-ES has the benefit of having few
hyperparameters to tune, but requires λ function evaluations on
each iteration for some fixed population size λ (set to 10 in this
experiment). We use the negative mean absolute state error be-
tween the target and proposed models as the fitness function (op-
timization objective) for CMA-ES, and use the initial proposed
model for IRT as the CMA-ES initial guess.

We report two metrics for this experiment. First, we cal-
culate |ζPk−ζT |, the absolute error between the proposed and
target parameters averaged across all parameters and timesteps
1 . . .τ , for each optimization iteration. More efficient methods
will more quickly reduce the error rate. We also report the mean
absolute observation error between the proposed and target mod-
els at each iteration, MAEo = |oP−oT |.

In general, IRT performed well on this problem. Fig. 3
shows an example of IRT tuning two proposed simulations with
different starting parameter values to match a target simulation.
The untuned case (iteration 0, first row) shows the initial discrep-
ancy between the observations. The first IRT iteration improves
the behavior considerably, although the optimization is still un-
stable as shown in the next iteration. After 20 iterations, both
proposed models approximate the dynamics and maximum mag-
nitudes quite well.

Fig. 4 and Fig. 5 show the parameter and state absolute error,
respectively, as a function of the number of proposed simulations
evaluated during optimization. The direct prediction method fails
to learn an accurate predictor and results in decreased perfor-
mance compared to the initial proposed guess. This is likely due
to the very large search space as well as the lack of data pro-
vided by a proposed simulation. CMA-ES is able to make mod-
est progress in reducing both state and parameter error, but doing
so requires a large number of simulations. IRT, on the other hand,
is much more efficient, optimizing parameters to the best of its
ability (around 10% mean error averaged across all timesteps)
almost immediately. Note that each iteration of IRT need not be
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FIGURE 3: Observations for proposed and target models during
tuning in Experiment 1 (sim-to-sim). Each column represents a
different initial proposed model and each row represents a dif-
ferent tuning iteration. Time is plotted on the X axis and marble
position (normalized to the range [-1, 1] as described in the text)
on the Y axis.

strictly better than previous iterations, as seen in Fig. 5.
Fig. 6 shows how individual parameters converge to a value

over several iterations of IRT. Some parameters overshoot their
final value, but eventually, all trials converged to the same opti-
mum.

6.2 Experiment 2: Real-World System Identification
In the next experiment, we used IRT to tune a simulator to

match our physical experimental setup (Fig. 2), where two robots
interact with the labyrinth.

On this system, due to delay and lag in the controller, we did
not choose a control rate but instead executed motions as quickly
as our controller would allow (this is why the time scale factor
is necessary). We applied the same sinusoidal motions as in the
simulated environment and observe the resulting marble behav-
ior. The control knob position commands were sent to the robots’
7th joints (wrists) using the Robot Operating System (ROS) [30]
and executed by the robots’ internal controllers. Visual observa-
tions were collected using Logitech HD webcam mounted above
the labyrinth, and we used thresholding operations and contour
detection provided by OpenCV [31] to extract the marble posi-
tion as the observation at each timestep. This observation was
then used as oT . The initial proposed parameters ζp0 were cho-
sen at random from the overall parameter space.
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FIGURE 4: Mean absolute parameter error (averaged over 10
trials) for Experiment 1. In this and the other error plots, the
Y axis units are normalized marble position units: an error of 1
equals the size of the labyrinth board.

FIGURE 5: Mean absolute state error (averaged over 10 trials)
for Experiment 1 expressed in normalized board coordinates (see
Fig. 4 for explanation).

For this experiment, we report observation error as in the
previous experiment, but cannot report parameter error as we do
not know the correct values for the physical system. We compare
against the same two baselines.

Overall, this task was significantly harder than the sim-to-
sim tuning task. The main issue lies in the fundamental differ-
ences in model type. In the case of sim-to-sim, the observations
are generated from two models that are identical except for the
parameterization, and so it is theoretically possible to achieve
zero state estimation error. This cannot be said for the real sys-
tem, which also includes noise in the sensor observations and dy-
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FIGURE 6: Parameter evolution curves for IRT in Experiment 1
(10 traces shown).

namic interactions (as well as non-approximated contact dynam-
ics). These deviations cause significant noise in the estimated
gradient. This is apparent in Fig. 8, which shows tuning perfor-
mance starting in the middle of the parameter space ([0.5, 0.5,
0.5, 0.5, 0.5]). The state error achieved by IRT is low, but unsta-
ble.

Fig. 7 figure shows one representative success and one fail-
ure case from real-world tuning. In the failure case, the esti-
mated parameters diverged towards 0, predicting no motion of
the labyrinth table or marble.

However, despite the noise issues, IRT was still able to tune
simulator parameters more quickly than the baselines as summa-
rized in Table 1, achieving a 4.02% error rate after evaluating
only 5 proposed simulations.

7 DISCUSSION
This work shows IRT’s applicability not just for tuning mul-

tiple physical parameters for a given system, but also the parame-
ters necessary to understand how the simulator itself works such
as controlling how observations are generated and how quickly
the simulation runs. Simulators often are highly sensitive to in-
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FIGURE 7: Observations for proposed and target models dur-
ing tuning in Experiment 2 (sim-to-real) expressed in normal-
ized board coordinates (see Fig. 4 for explanation). Each column
represents a different initial proposed model and each row repre-
sents a different tuning iteration. Time is plotted on the X axis
and marble position (normalized to the range [-1, 1] as described
in the text) on the Y axis.

ternal variables, such as timesteps, solver parameters, and the
choice of contact models or constraint solvers. The ability to ad-
just these parameters automatically can relieve some of the bur-
den of the system designer to produce a correctly-tuned simula-
tion even before considering a particular system.

The physical labyrinth exhibits several unmodeled effects,
including anisotropic friction, random deviations in the motor
delay (due to software) and in the marblei’s surface. To model
these, we could either characterize the noise and produce a prob-
abilistic estimate, or could add state adjustments to those created
by the simulator using a neural network learned function, as has
been done in similar works [7, 8, 25].

8 CONCLUSIONS
In this work, we have shown that IRT can perform multipa-

rameter system identification on real-world systems using only
visual observations from that system.

The ability to identify multiple and coupled system pa-
rameters generates several possible areas for future research.
The method enables the improved implementations of model-
predictive control (MPC), reinforcement learning, or other
model-based control methodologies by closing the reality gap.
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TABLE 1: Predicted marble state error statistics for the different optimization methods tested in Experiment 2 (sim-to-real).

CMA-ES Direct Prediction IRT (ours)

Minimum state MAE 6.68% 34.6% 4.02%

Number of simulated rollouts to reach minimum 30 0 5
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FIGURE 8: Mean absolute state error for Experiment 2 (sim-to-
real.

Such parameters could be models as probabilistic functions to
account for variance due to system imperfections such as surface
irregularities, variations in restitution coefficients depending on
the contact point, etc. Using IRT, such models can be made to in-
clude more difficult-to-calculate system parameters unrelated to
its physical characteristics including communication delays and
processing time. These methods could be explored specifically
for the completing the labyrinth faster, more safely, or more effi-
ciently. Future work could also look to improve the algorithm by
using cameras with higher frame rates and a faster control rate.

We look forward to automatic system identification and pa-
rameter tuning from minimal amounts of real-world data as a
way for robots to accurately and quickly build new simulators
representing their environment.
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[14] Ho, B. L., and Kálmán, R. E., 1966. “Effective construc-

tion of linear state-variable models from input/output func-
tions”. Automatisierungstechnik, 14(1-12), pp. 545–548.

[15] Khosla, P., and Kanade, T., 1985. “Parameter identifica-
tion of robot dynamics”. In 1985 24th IEEE Conference on
Decision and Control, IEEE, pp. 1754–1760.

[16] Gautier, M., and Khalil, W., 1988. “On the identification
of the inertial parameters of robots”. In Proceedings of
the 27th IEEE Conference on Decision and Control, IEEE,
pp. 2264–2269.

[17] Abdalmoaty, M. R., and Hjalmarsson, H., 2017. “Sim-
ulated pseudo maximum likelihood identification of non-
linear models”. IFAC-PapersOnLine, 50(1), pp. 14058–
14063.

[18] Allevato, A., Schaertl Short, E., Pryor, M., and Thomaz,
A. L., 2019. “TuneNet: One-Shot Residual Tuning for Sys-
tem Identification and Sim-to-Real Robot Task Planning”.
In CoRR, Vol. abs/1907.1.

[19] Agrawal, P., Nair, A. V., Abbeel, P., Malik, J., and Levine,
S., 2016. “Learning to Poke by Poking: Experiential Learn-
ing of Intuitive Physics”. Advances in neural information
processing systems, pp. 5074–5082.

[20] Pinto, L., and Gupta, A., 2017. “Learning to push by grasp-
ing: Using multiple tasks for effective learning”. In Inter-
national Conference on Robotics and Automation (ICRA),
IEEE, pp. 2161–2168.

[21] Herman, M., Gindele, T., Wagner, J., Schmitt, F., and Bur-
gard, W., 2016. “Inverse reinforcement learning with simul-
taneous estimation of rewards and dynamics”. In Artificial
Intelligence and Statistics, pp. 102–110.

[22] Xu, Z., Wu, J., Zeng, A., Tenenbaum, J., and Song, S.,
2019. “DensePhysNet: Learning Dense Physical Object
Representations Via Multi-Step Dynamic Interactions”. In
Proceedings of Robotics: Science and Systems.

[23] Bauza, M., Hogan, F. R., and Rodriguez, A., 2018. “A
Data-Efficient Approach to Precise and Controlled Push-
ing”. CoRR.

[24] Hermans, T., Fuxin Li, Rehg, J. M., and Bobick, A. F.,
2013. “Learning contact locations for pushing and ori-
enting unknown objects”. In 2013 13th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids),
IEEE, pp. 435–442.

[25] Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser,
T. A., 2019. “TossingBot: Learning to Throw Arbitrary Ob-
jects with Residual Physics”. In Proceedings of Robotics:
Science and Systems.

[26] Ajay, A., Wu, J., Fazeli, N., Bauza, M., Kaelbling, L. P.,
Tenenbaum, J. B., and Rodriguez, A., 2018. “Augment-
ing Physical Simulators with Stochastic Neural Networks:
Case Study of Planar Pushing and Bouncing”. In In-
ternational Conference on Intelligent Robots and Systems

(IROS).
[27] Kloss, A., Schaal, S., and Bohg, J., 2017. “Combining

learned and analytical models for predicting action effects”.
CoRR.

[28] Kirchner, E. A., Woehrle, H., Bergatt, C., Kim, S. K., Met-
zen, J. H., Feess, D., and Kirchner, F., 2010. “Towards
operator monitoring via brain reading–an EEG-based ap-
proach for space applications”. In Proceedings of the 10th
international symposium on artificial intelligence, robotics
and automation in space, pp. 448–455.

[29] Erez, T., Tassa, Y., and Todorov, E., 2015. “Simula-
tion tools for model-based robotics: Comparison of bul-
let, havok, mujoco, ode and physx”. In 2015 IEEE in-
ternational conference on robotics and automation (ICRA),
IEEE, pp. 4397–4404.

[30] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote,
T., Leibs, J., Wheeler, R., and Ng, A. Y., 2009. “ROS:
an open-source Robot Operating System”. In International
Conference on Robotics and Automation (ICRA).

[31] Bradski, G., 2000. “The OpenCV Library”. Dr. Dobb’s
Journal of Software Tools.

9 Copyright c© 2020 by ASME


