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Abstract Social learning in robotics has largely focused on
imitation learning. Here we take a broader view and are in-
terested in the multifaceted ways that a social partner can
influence the learning process. We implement four social
learning mechanisms on a robot: stimulus enhancement, em-
ulation, mimicking, and imitation, and illustrate the compu-
tational benefits of each. In particular, we illustrate that some
strategies are about directing the attention of the learner to
objects and others are about actions. Taken together these
strategies form a rich repertoire allowing social learners to
use a social partner to greatly impact their learning process.
We demonstrate these results in simulation and with physi-
cal robot ‘playmates’.

Keywords Learning by imitation · Social learning ·
Biologically inspired learning

1 Introduction

Our work is inspired by the vision of service robots exist-
ing in human environment, assisting with various tasks in
our homes, schools, and workplaces. Social learning will be
crucial to the successful application of robots in everyday
human environments. It will be impossible to give these ma-
chines all of the knowledge and skills a priori that they will
need to serve useful long term roles in our dynamic world.
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The ability for everyday users, not experts, to guide them
easily will be key to their success. Our research aims to
build more flexible, efficient, and teachable robots, and is
motivated by the distinction between human learning and
machine learning. The research question we explore in this
work is: What are the best computational models to use in
exploiting information provided by a social partner?

1.1 Social learning

Humans and some animals are equipped with various mech-
anisms that take advantage of social partners. Children nat-
urally interact with adults and peers to learn new things
in social situations. They are motivated learners that seek
out and recognize learning partners and learning opportu-
nities (Rogoff and Gardner 1984; Pea 1993), and through-
out development, learning is aided in crucial ways by the
structure and support of their environment and especially
their social environment (Vygotsky 1978; Greenfield 1984;
Lave and Wenger 1991). These social partners guide a learn-
ing process in a variety of ways; for example, directing the
learner’s attention to informative parts of the environment
(Wertsch et al. 1984; Zukow-Goldring and Arbib 2007). Un-
derstanding these mechanisms and their role in learning will
be useful in building robots with similar abilities to benefit
from other agents (humans or robots) in their environment,
and explicit teaching attempts by these agents.

Our approach is motivated by the following four so-
cial learning mechanisms identified in natural learners
(Tomasello 2001; Call and Carpenter 2002):

– Stimulus (local) enhancement is a mechanism through
which an observer (child, novice) is drawn to objects oth-
ers interact with. This facilitates learning by focusing the
observer’s exploration on interesting objects–ones useful
to other social group members.
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– Emulation is a process where the observer witnesses
someone produce a particular result on an object, but then
employs their own action repertoire to produce the result.
Learning is facilitated both by attention direction to an
object of interest and by observing the goal.

– Mimicking corresponds to the observer copying the ac-
tions of others without an appreciation of their purpose.
The observer later comes to discover the effects of the
action in various situations. Mimicking suggests, to the
observer, actions that can produce useful results.

– Imitation refers to reproducing the actions of others to ob-
tain the same results with the same goal.

Humans exhibit all of these social learning mechanisms,
imitation being the most complex. While imitation seems
to be distinctly human, many animals make use of the sim-
pler relaxed versions of imitation. We are interested in tak-
ing a broad view of the ways that social partners influence
learning. In particular, we believe the three relaxed versions
of imitation learning are potentially useful in creating more
natural social learning interactions between humans and ro-
bots.

1.2 Approach

In this article we show an implementation of these four so-
cial learning mechanisms and articulate the distinct compu-
tational benefits of each. One contribution of this work is our
analysis of relaxed versions of imitation learning.

In order to directly compare these mechanisms we use
a controlled learning environment, where the social partner
is another robot. This allows us to systematically change the
behavior of the social partner and understand the effect it has
on the different learning strategies. We then draw conclu-
sions about the computational benefits of each social learn-
ing strategy.

We show that all four social strategies provide learning
benefits over self exploration, particularly when the target
goal of learning is a rare occurrence in the environment. We
characterize the differences between strategies, showing that
the “best” one depends on both the nature of the problem
space and the current behavior of the social partner. These
results are demonstrated in simulation and with two physical
robot ‘playmates’.

1.3 Overview

In the following section we present related works, and in
Sect. 3 we detail our implementation of the social learning
mechanisms. Section 4 covers experiments with the baseline
non-social learning strategies for comparison, and Sect. 5
is our social learning experiment and results. In Sect. 7 we
consider several issues related to the generality of these find-
ings (alternative performance metrics, effects of noise, and

alternative classifiers). Finally we have a discussion of these
results and their implications for future work in social robot
learning in Sect. 8.

2 Related work

In this section we briefly review some approaches to social
learning in robots.

Several prior works deal with the scenario of a machine
learning by observing human behavior. Learning high-level
tasks by observation (Kuniyoshi et al. 1994; Voyles and
Khosla 2001), using a human demonstration to learn a re-
ward function (Atkeson and Schaal 1997), and skill learn-
ing by demonstration (Schaal 1999; Breazeal and Scassel-
lati 2002). There is usually a specific training phase, where
the machine observes the human, then a machine learning
technique is used to abstract a model of the demonstrated
skill.

In order to imitate, the robot has to map a sensed experi-
ence to a corresponding motor output. Many have focused
on this perceptual-motor mapping problem. Often this is
learned by observation, where the robot is given several ob-
servations of a particular motor action (Demiris and Hayes
2002; Jenkins and Matarić 2002; Alissandrakis et al. 2006).

In other works the human is able to directly influence the
actions of the machine to provide it with an experience from
which to learn. In one example, the robot learns a naviga-
tion task by following a human demonstrator who uses vo-
cal cues to frame the learning (Nicolescu and Matarić 2003).
A related example has a robot learn a symbolic high level
task within a social dialog (Breazeal et al. 2004).

The “pick and place” method of programming is wide-
spread in industrial robotics, allowing an operator to manip-
ulate the robot and essentially record a desired motion tra-
jectory to be played back. Calinon and Billard (2007) have
looked at how a person could similarly demonstrate task ex-
amples to a robot by moving its arms, generalizing a motion
trajectory representation for the task. Others let a human di-
rectly control the actions of a robot agent with teleoperation
to supervise a Reinforcement Learning (RL) process (Smart
and Kaelbling 2002), or to provide example task demonstra-
tions (Peters and Campbell 2003). Some recent approaches
have the agent provide feedback about when these demon-
strations are needed. In confidence-based learning (Cher-
nova and Veloso 2007), the robot requests additional demon-
strations in states that are different from previous exam-
ples. In our own prior work (Thomaz and Breazeal 2008;
Thomaz and Cakmak 2009), the agent communicates un-
certainty with eye gaze. Similarly in Grollman and Jenkins
(2008), the robot communicates certainty in order to solicit
demonstrations from the teacher.
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In other cases the human influences the experience of
the machine with higher level constructs than individual ac-
tions, for example, providing feedback to a reinforcement
learner. Several approaches are inspired by animal training
techniques like clicker training and shaping (Blumberg et
al. 2002; Kaplan et al. 2002; Saksida et al. 1998). A human
trainer uses instrumental conditioning techniques and sig-
nals the agent when a goal behavior has been achieved. Re-
lated to this, a common approach for incorporating human
input to a reinforcement learner lets the human directly con-
trol the reward signal to the agent (Isbell et al. 2001; Stern
et al. 1998). Thomaz and Breazeal (2008) have augmented
this approach to interactive RL.

A few studies have also taken inspiration from non-
imitative social learning mechanisms seen in animals and
humans. Melo et al. (2007) present a framework for RL
in which relaxed versions of imitation learning involve ob-
serving a subset of the information in an expert demonstra-
tion. For example, in a strategy that corresponds to emula-
tion, the learner only observes the sequence of states dur-
ing a demonstration (as opposed to a complete transition-
reward tuple sequence). Lopes et al. (2009) present a com-
putational model of social learning in which the behavior
of the learner depends on a weighted sum of three sources
of information: action preferences, observed effects and in-
ferred goals. They show that different weight distributions
result in behaviors that are similar to social learners in cited
experiments with chimpanzees and children. One distinction
of our work is our approach to modeling the various social
learning strategies through changes in an attention mecha-
nism. Additionally, our evaluation compares the computa-
tional benefits of each of the four strategies across various
environments.

Any approach that takes input from a human teacher
has to determine the amount of teacher involvement in the
process. Prior work has investigated a wide spectrum of
teacher involvement. From systems that are completely de-
pendent on the teacher in order to learn anything, to others
that do self-learning and incorporate some human feedback
and guidance along the way.

One high level point we take away from social learn-
ing in humans and animals is the ability to flexibly operate
along this spectrum of teacher engagement. The four social
learning mechanisms we implement here represent differ-
ent points on this spectrum: from imitation (complete de-
pendence on the teacher’s demonstration) to relaxed ver-
sions of imitation that are biased by the teacher in vari-
ous ways. Our experiments with these mechanisms illustrate
how these strategies are mutually beneficial and argue for a
social learning approach that incorporates a variety of ways
to exploit social partners.

3 Implementation

In this work, we have a social learning situation composed
of two robot playmates with similar action and perception
capabilities. Our experiments focus on learning a “sound-
making” affordance for different objects in the environment.

We use two robots, Jimmy and Jenny (Fig. 1), which are
upper torso humanoids on wheels built from Bioloid kits and
Webcams. Their 8 degrees of freedom enable arm move-
ments, torso rotation and neck tilt. The wheels are used to
navigate the workspace.

The behavior system is implemented in C6, a branch of
the latest revision of the Creatures architecture for interac-
tive characters (Blumberg et al. 2002). This controls the real
robots with percepts from sensors, as well as a graphical
model of the robots with simulated sensing, world dynam-
ics, and virtual objects. In simulation, we can set up envi-
ronments composed of different object properties (Fig. 2).

The behavior system implements a finite state machine to
control the exploration for collecting learning experiences.
In non-social exploration the robot (i) observes the environ-
ment, (ii) approaches the most salient object, (iii) performs
the selected action, (iv) observes the outcome (sound or no
sound), (v) goes back to its initial position and (vi) updates
the saliency of objects and actions based on its exploration
strategy. In social exploration, after each object interaction
the robot goes into an observing state and performs the same
updates, of object saliency and action desirability, based on
its observation of the other agent’s interaction. In the rest of
this section we give details on the domain of our simulation
experiments and our implementation of exploration strate-
gies. Details specific to the physical robot experiment are
given in Sect. 6.

3.1 Objects

The learning environment involves objects with three dis-
crete perceived attributes: color, size and shape, and one

Fig. 1 Robot playmates Jimmy and Jenny in the playground
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Fig. 2 Snapshot of the simulation experiments in C6. The bars show the learner’s object attribute saliencies for color, size and shape

Table 1 Features and feature values of objects

Feature # of values Values

Color 4 Pink, Blue, Green, Orange

Size 3 Small, Medium, Large

Shape 2 Cube, Sphere

hidden property of sound-maker (see Table 1). In our exper-
iments, the environment always contains all possible combi-
nations of color, size and shape, however the sound-making
properties of these objects can change. Different learning
problems are obtained by changing the percentage of ob-
jects that make sound in the environment. For instance, all
green objects could be sound makers in one environment,
while in another, all objects with a particular shape and size
are sound-makers.

Based on prior work (Thomaz and Cakmak 2009), we hy-
pothesize that social learning will be especially beneficial in
the case of rare sound-makers; thus, we systematically vary
the frequency of sound-makers in the environment to com-
pare various non-social and social exploration strategies.

The simulation environment has 24 objects with different
attributes (one of 4 colors, 3 sizes and 2 shapes). We control
the percentage of objects in the environment that produce
sound, resulting in six learning environments as described
in Table 2. These environments are chosen to cover a range
of different learning problems where the target class varies
from frequent to rare. Note that there are a number of en-

Table 2 Sound-maker property of objects in different learning envi-
ronments in simulation

Description of Number of Percentage

sound-makers sound-makers

All objects with color 18 75%

other than green

All green and orange 12 50%

objects

All green objects 6 25%

All green objects that 4 ∼17%

are not large

All small and green 2 ∼8%

objects

Only the small, green, 1 ∼4%

cube-shaped object

vironments with the same fraction of sound-makers and the
choice of the particular environment used in our experiment
is arbitrary. The choice of these particular fractions is also
arbitrary, however it is intended to cover the range with more
emphasis on rare sound-maker environments.

3.2 Perception

The social learning task considered in this study requires
several perceptual capabilities:

1. Detecting objects in the environment and their properties



Auton Robot (2010) 29: 309–329 313

Table 3 Action parameters and their values

Action Parameter # of values Values

Action Type 2 Grasp, Poke

Grasp Distance 3 Far, Middle, Close

Width 4 Very-large, Large,

Small, Very-small

Poke Distance 3 Far, Middle, Close

Speed 4 Very-fast, Fast,

Slow, Very-slow

2. Detecting objects that are being interacted with by a so-
cial agent

3. Detecting the actions performed by a social agent
4. Detecting the effects of own actions or social partner’s

actions on objects

All of these perceptual problems are trivialized in the
simulation experiment by making all information available
to the learner directly from the internal data structures of the
simulator. Some of these problems are also simplified on the
real robots by the fact that we are using two identical robots
(with the same action repertoire and perceptual capabilities)
and by constraining the environment.

3.3 Actions

The playmates’ action set has two actions: poke—a single
arm swing (e.g., for pushing objects) and grasp—a coordi-
nated swing of both arms. Both involve an initial approach
to an object of interest, and are parametrized with the fol-
lowing discrete parameters (i) acting distances and (ii) grasp
width or (iii) poking speed. In simulation we use 24 different
actions (poke or grasp, 4 grasp widths, 4 poke speeds and 3
acting distances) as summarized in Table 3.

As with objects, we vary the frequency of sound-produc-
ing interactions by tuning the actions to have different ef-
fects on the objects, yielding different learning problems.
This is achieved by making only one or both of the actions
able produce sound and by varying the range of grasp width,
poking speed and acting distance within which an action
produces sound.

In the simulation experiments, we have six cases in which
a different fraction of the action set is able to produce sound
when executed on a sound-maker object (Table 4).

3.4 Learning task

Our experiments focus on the task of learning a relation be-
tween a context in which an action produces a certain out-
come; referred to as affordance learning. These relations
are learned from interaction experiences of [context-
action-outcome] tuples (Sahin et al. 2007). We use a

Table 4 Actions that produce sound in different learning environ-
ments in simulation

Description of sound # of such Percentage

producing actions actions

Both actions, except when 18 75%

(Grasp) width is very-large, or

(Poke) speed is every-slow.

Both actions, when 12 50%

width is very-small, small, or

speed is very-fast, fast.

Both actions, when 6 25%

width is very-small, or

speed is very-fast.

Both actions, when 4 ∼17%

distance is not far, and

width is very-small, or

speed is very-fast.

Both actions, when 2 ∼8%

distance is close, and

width is very-small, or

speed is very-fast.

Only grasp, when 1 ∼4%

distance is close, and

width is very-small.

2-class Support Vector Machine (SVM) classifier (Vapnik
1998) to predict an action’s effect in a given environmental
context. We consider other classifiers in Sect. 7.2.

SVMs are widely used discriminative classifiers. SVM
classification is based on a linear separator constructed from
a set of representative points close to the margin (support
vectors). The input space is implicitly projected to a higher
dimensional space with the help of kernels. A linear kernel
was used in our experiments. For implementation, we use
the open source library LibSVM (Chang and Lin 2001) in-
tegrated with the WEKA data mining software (Hall et al.
2009).

The SVM inputs are the values of perceived features of
the interacted object (Table 1) and parameters of the ac-
tion performed on that object (Table 3). The input vector
contains one variable for each possible value of features
and parameters. The variable corresponding to the current
value is set to 1 while all other values are set to 0. The
prediction target is whether or not this context-action
produces sound. In this framework the robot is simultane-
ously learning the object features and action parameters re-
quired to produce a desired effect in the environment. Ex-
ploration is the process of collecting these interaction expe-
riences.
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3.5 Exploration strategies

Our goal is to compare social and non-social exploration
strategies, i.e. rules for interacting with the environment to
collect data. The exploration strategy determines which ob-
ject in the environment to interact with next, and what action
to perform. Similar to the way that animals benefit from so-
cial learning mechanisms, these strategies can help a robot
by guiding its exploration of the space of possible objects
and actions towards useful parts of the space. While stimulus
enhancement and emulation direct the learner’s attention to
informative parts of the object space, (i.e. the environment)
mimicking guides the learner in the action space. Imitation
combines the benefits of both types of information.

The alternative to social learning is non-social learning,
in which a robot can use various exploration strategies. For
instance, it can randomly select an object and try all possible
actions on it, or it can adapt its exploration based on previous
interactions.

In this study, an exploration strategy is implemented as an
attention mechanism, where each object attribute value and
action parameter value has a corresponding saliency rang-
ing from 0 to 1. The robot always performs the most salient
action on the most salient object. For example if the salien-
cies of the four possible values of the color attribute are as
given in Fig. 2(b) (pink: 0.00, blue: 0.48 green: 0.56 orange:
0.51) the robot will interact with a green object because it
has the highest saliency. Other feature values of the object
are chosen in a similar way. As a result, given the saliency
distribution in Fig. 2(b) the robot interacts with the green,
large, sphere object.

Action selection works similarly. Each action parameter
value (e.g. far, middle, close for the Grasp-Distance parame-
ter) has a corresponding saliency. There is an extra parame-
ter that can take two values (grasp or poke) that determines
which of the two actions is used in the interaction. The robot
chooses the action with higher saliency and uses the para-
meter values with highest saliency for the parameters of the
chosen action.

Object and action selection is the same in all exploration
strategies (i.e. select most salient), whereas the way that
saliencies are updated is different in all strategies. Each
strategy has a different rule for updating saliencies after
every interaction. Details on how each strategy updates
saliencies is given in Sects. 4 and 5.

As an example, consider the exploration strategy used by
the learner in Fig. 2. This strategy increases the saliency of
the attributes of the object that the social partner interacts
with and decreases the saliency of different object attributes.
Since the social partner interacts with a green object (Fig. 2),
the saliency of green is increased by 0.2 while the saliency
of other colors is decreased by 0.1. Similarly the saliency of
small and sphere are increased. As a result of this update,

the learner interacts with a similar object (large, green, cube
as shown in Fig. 2(b)). Note that even though the saliency of
large was increased and the saliency of small was decreased
in the update, the saliency of small was large enough in the
previous interaction to make the learner interact with a small
object once more. Note also that the saliencies of actions and
action parameters are randomized in this strategy, therefore
it can be considered as a strategy that guides the learner in
the object space.

We remark that this implementation of exploration strate-
gies is feature-based rather than object-based. While this
provides a simple mechanism to explore objects based on
feature similarities, it is limited in terms of recognizing ob-
ject identity.

3.6 Experimental method

We conducted a series of experiments in order to analyze
and compare social and non-social exploration strategies. In
each experiment the learner uses a particular strategy to col-
lect a data set which is used for training a sound-maker clas-
sifier. The experiment is repeated in several environments
that present different learning problems. In social learning
experiments the social partner has one of three pre-defined
behaviors that are described in Sect. 5.2.

Different environments have different frequencies of
sound producing interactions. Whether or not rareness is
due to object or action has a different impact on the object-
oriented versus action-oriented social learning strategies.
Thus, we systematically experiment with both kinds of
rareness. In these experiments, we first keep the percentage
of sound producing actions constant at 25% and vary the
sound-maker object rareness; and then keep the object per-
centage constant at 25% and vary the percentage of sound
producing actions.

We present experimental results from simulation for all
environments, exploration strategies and social partner be-
haviors. Then we present a validation of these experiments
with physical robots. In simulation there are 576 (24 × 24)

possible test cases (interactions). SVM classifiers are trained
in a batch mode after 28 interactions. This corresponds to
a small subset of all possible interactions (∼5%). For each
environmental condition, the experiments are repeated 200
times with random initialization. We report average perfor-
mance across these repeated experiments.

With classifiers trained using the various strategies, we
can compare performance. In doing this comparison, our
performance measure is recall rate in prediction of the ef-
fect for all object-action combinations. Recall corre-
sponds to the ratio of true positives and the sum of true pos-
itives and false negatives (i.e., of all the sound-making cases
in the test set, the percentage predicted as such). In a later
section (Sect. 7) we consider alternate performance metrics.
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4 Baseline experiments: non-social learning

An initial question for this research is the selection of a
fair or appropriate non-social learning baseline to compare
social learning against. We consider three different non-
social exploration strategies for learning affordances: ran-
dom, goal-directed and novelty-based exploration. We also
compare these strategies with a systematic data set that
consists of all possible interactions. This section describes
the exploration strategies and experimental results for non-
social learning. The details of how saliencies are updated for
individual exploration strategies are summarized in Table 6.

4.1 Implementation of exploration strategies

(1) Random In each interaction the robot randomly picks
a new object, action and a set of action parameters. This
is achieved by randomizing the saliency of each object at-
tribute and action parameter and selecting the most salient
object and action. The data sets collected with random ex-
ploration are equivalent to random subsets of the systematic
data set.

(2) Goal-directed In goal-directed exploration, the robot
keeps interacting with objects similar to ones that have given
the desired effect in a previous interaction. Likewise, it per-
forms actions that are similar to those that produced sound
in the past. If an interaction produces sound, the saliency
of some attribute values of the object used in that interac-
tion are increased and the saliency of different ones are de-
creased. Increasing or decreasing all attributes deterministi-
cally is avoided because this will result in interacting with
the exact same object once it has produced sound, therefore
will stop the exploration. By updating a random subset of
the attributes of an object that made sound, the robot will in-
teract with objects that have common attributes, rather than
exactly the same object.

In the goal-directed strategy, if no sound is produced the
robot updates saliencies randomly. As a result, the robot
only pays attention to positive information. An alternative
strategy could reduce the saliency of attribute values of the
object used in an interaction that did not produce sound, in
order to avoid objects similar to the ones that do not make
sound.

(3) Novelty-based In this strategy the robot prefers novel
objects and actions. After every interaction the robot reduces
the saliency of attribute values of the object that it just inter-
acted with, while increasing the saliency of different values.
Actions and action parameters are altered similarly.

(4) Systematic Data Set In addition to the data sets col-
lected using three exploration strategies, we consider a train-
ing set that consists of all possible object-action pairs in the
learning space. Note that the data sets obtained with the ex-
ploration strategies have much fewer examples than the sys-
tematic dataset. In fact, the number of examples collected
with exploration strategies is chosen to be a small fraction
of all possible examples (e.g. in simulation 28 interactions
is 5% of the size of the systematic data set).

4.2 Results for non-social learning

Our experiments let us compare the performance of the
three individual exploration strategies, showing that novelty-
based exploration performs best. Additionally we look at the
effect of rareness of sound-makers in the environment, and
number of interactions allowed.

4.2.1 Comparison of strategies

The systematic training set is designed to cover the com-
plete learning space. Training with the systematic data set
is a best-case scenario for the learning algorithm; it demon-
strates how well the affordances can be learned when com-
plete and equally distributed data is available and essentially
shows that this is a learnable problem.

A 20-fold cross validation test is performed on the sys-
tematic data set for 12 environments with varying degrees
of sound-maker object and action rareness. We observe that
prediction is 100% accurate for the systematic strategy in all
environments with sound-maker frequency of 8% or greater
(Fig. 3).

In the last environment case (4% sound-makers) the event
of sound-making happens so infrequently that the resulting
SVM always predicts ‘no sound’ and the recall rate is 0%.
Standard SVMs are known to have a bias towards the larger
class in the case of unbalanced datasets (Huang and Du
2005). In this case (4% sound-maker objects and 25% sound
producing actions, or the other way around) the systematic
dataset is highly unbalanced: it has 6 positive interactions
(interaction that produced sound) out of a total of 576 inter-
actions.

Figure 3 compares the recall rate for non-social learning
strategies in different environments. The performance of the
random exploration strategy reduces as the sound-maker ob-
jects become rare in the environment, since it is less likely
to randomly interact with a sound-maker when it is rare.

The novelty-based strategy outperforms the other explo-
ration strategies especially when the sound-makers are fre-
quent. The strength of this strategy in these environments is
its uniform coverage of the search space by always interact-
ing with different objects. As the sound-makers become very
rare the performance of all three strategies degrade and the
difference between the strategies becomes less significant.
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Fig. 3 Recall rate for
non-social strategies after 28
interactions for (a) six
environments with different
sound-maker frequencies (sound
producing action frequency held
constant at 25%) and (b) six
environments with different
sound-producing action
frequencies (sound-maker object
frequency held constant at 25%)

The goal-directed strategy results in lower recall rates
than random when the sound-makers are frequent in the en-
vironment. With this strategy the robot interacts only with
a subset of objects that are similar to the first object that
was discovered to be a sound-maker. However, when the en-
vironment has a high percentage of sound-makers, objects
with no common perceptual attributes may also be sound-
makers. Therefore, in such environments covering only a
subset of objects degrades the performance of the goal-
directed strategy. As the sound-makers become less frequent
the goal-directed strategy becomes better than the random
strategy.

In the last environment, we observe that all strategies
have non-zero recall unlike the systematic dataset. Even
though the sound producing interactions happen rarely, the
resulting data sets are less unbalanced since they include
only a total of 28 interactions. As result the average recall
rate is non-zero.

4.2.2 Comparison of environments

In Fig. 3, we see a significant effect of the rareness of sound-
makers in the environment on all three exploration strate-
gies (see Table 5 for statistical significance). While the per-
formance of random and novelty-based strategies monoton-
ically decrease with decreasing sound-maker frequency, the
performance of the goal directed strategy increases initially
and decreases afterwards for reasons explained above.

4.2.3 Comparison of number of interactions

All three strategies result in imperfect learning because they
cannot explore the complete object/action space. However,
we expect that the longer we allow the robot to interact with

Table 5 Effect of (a) sound-maker object rareness and (b) sound pro-
ducing action rareness on different exploration strategies (measured
with 1-way ANOVA). These tests show that performance is signifi-
cantly different as the target becomes rare with all of the strategies

(a)

Strategy Analysis of variance

Random F(5,1194) = 93.91, p < 0.001

Goal-directed F(5,1194) = 11.51, p < 0.001

Novelty-based F(5,1194) = 178.19, p < 0.001

(b)

Strategy Analysis of variance

Random F(5,1194) = 138.20, p < 0.001

Goal-directed F(5,1194) = 10.51, p < 0.001

Novelty-based F(5,1194) = 130.99, p < 0.001

the environment, the better its learning will be. In Fig. 4 we
present learning curves for non-social exploration strategies
in three sample environments. In general, it can be observed
that learning improves with increasing number of interac-
tions. However, in the case of very rare sound-makers (4%),
increasing the number of interactions does not improve per-
formance. The reason being that when the sound-makers are
very rare, even 116 interactions is often not sufficient to ran-
domly discover a sound-maker.

5 Experiments with social learning

Next, we present experiments evaluating social exploration
strategies. In these experiments one of the robots (learner)
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Fig. 4 Learning curves (i.e. change of recall rate with increasing num-
ber of interactions) for non-social learning methods in three sample
environments with different action and object space rareness

explores the environment using a social strategy while the
other robot (social partner) has a pre-defined behavior. The
social partner behavior influences how much the learner can
benefit from the social partner as a ‘teacher’, therefore we
systematically vary it. We first present the implementation
of the strategies and social partner behaviors, followed by
comparative results.

5.1 Implementation of social exploration strategies

As with the non-social strategies, the four social exploration
strategies are implemented by varying the ways in which ob-
ject and action saliencies are updated after each interaction
with the environment.

(1) Stimulus Enhancement The robot prefers to interact
with objects that its playmate has interacted with. After
every observed interaction, the learner increases the saliency
of attributes of the object that the social partner has inter-
acted with and decreases others.

(2) Emulation The robot prefers objects seen to have given
the desired effect. If an observed interaction produces sound,
the saliencies of the attributes of the object used are in-
creased. Otherwise, the saliencies are randomized.

(3) Mimicking This strategy involves copying the actions
of the social partner. We implement two versions:

– Blind: The learner mimics every partner action.
– Goal-based: The learner mimics actions only after it ob-

serves the goal.

Use of the term ‘mimicking’ in animal behavior literature
is closer to blind, but this distinction is useful in illustrating
computational differences between the social mechanisms.

(4) Imitation In imitation, the learner focuses on the ob-
jects used by its social partner and copies the actions of the
social partner. Again, there are two versions:

– Blind: The learner always imitates its social partner.
– Goal-based: It imitates after it observes the goal.

Both stimulus enhancement and emulation influence ob-
ject attribute saliencies, but do not imply anything about
actions. Action selection is random in these strategies. On
the other hand, mimicking influences action saliencies while
having no implication on objects. Object saliencies are
updated randomly in mimicking. Imitation combines the
strength of both, varying both the object and action salien-
cies based on the observation of the social partner. The so-
cial exploration strategies and their use of object, action and
result components of the demonstration are summarized in
Fig. 5. The implementation details for saliency update rules
are given in Table 6.

5.2 Social partner behavior

The behavior of the social partner has a crucial effect on the
learner. With particular social partner behaviors, these ex-
ploration strategies can become equivalent. For instance if
the partner produces a sound with every interaction, stimu-
lus enhancement and emulation behave very similarly. If the
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Table 6 Saliency update rules of all exploration strategies. f denotes
an object feature (e.g. color), vf denotes an object feature value (e.g.
green), sal(vf ) denotes the saliency of the feature value, pa denotes
parameters related to action a (including the ActionType parameter), p

denotes any action parameter, vp denotes the value of an action para-

meter (e.g. very-far), soundprev denotes whether the learner’s previous
interaction produced sound, soundpartner denotes whether the interac-
tion of the social partner produced sound. Note that saliency values are
bounded to the [0,1] range to avoid divergence. The upper and lower
bounds are asserted after every update

Strategy Update rules

Object saliencies Action saliencies

Random ∀f : ∀vf : sal(vf ) ← rand(0,1) ∀p : ∀vp : sal(vp) ← rand(0,1)

Goal-directed if(soundprev) ∀f : if(soundprev) ∀paprev :
∀vf = vf prev : sal(vf ) ← sal(vf ) + 0.2 ∀vp = vpprev : sal(vp) ← sal(vp) + 0.2

∀vf �= vf prev : sal(vf ) ← sal(vf ) − 0.1 ∀vp �= vpprev : sal(vp) ← sal(vp) − 0.1

else: ∀f : ∀vf : sal(vf ) ← rand(0,1) else: ∀p : ∀vp : sal(vp) ← rand(0,1)

Novelty-based ∀f : ∀vf = vf prev : sal(vf ) ← sal(vf ) − 0.1 ∀paprev : ∀vp = vpprev : sal(vp) ← sal(vp) − 0.1

∀vf �= vf prev : sal(vf ) ← sal(vf ) + 0.2 ∀vp �= vpprev : sal(vp) ← sal(vp) + 0.2

Stimulus enh. ∀f : ∀vf = vf partner : sal(vf ) ← sal(vf ) + 0.2 Same as Random

∀vf �= vf partner : sal(vf ) ← sal(vf ) − 0.1

Emulation if(soundparner) ∀f : Same as Random

∀vf = vf partner : sal(vf ) ← sal(vf ) + 0.2

∀vf �= vf partner : sal(vf ) ← sal(vf ) − 0.1

else: ∀f : ∀vf : sal(vf ) ← rand(0,1)

B. Mimicking Same as Random ∀papartner : ∀vp = vppartner : sal(vp) ← sal(vp) + 0.2

∀vp �= vppartner : sal(vp) ← sal(vp) − 0.1

G. Mimicking Same as Random if(soundparner) ∀papartner :

∀vp = vppartner : sal(vp) ← sal(vp) + 0.2

∀vp �= vppartner : sal(vp) ← sal(vp) − 0.1

else: ∀p : ∀vp : sal(vp) ← rand(0,1)

B. Imitation Same as Stim. Enhancement Same as B. Mimicking

G. Imitation Same as Emulation Same as G. Mimicking

partner explores objects and actions randomly, a learner that
blindly imitates will learn as if it was exploring randomly
itself. Therefore to compare the strategies fairly, we system-
atically vary the behavior of the social partner.

There are four possible types of demonstrations in terms
of the useful information communicated to the learner:

– Goal-demonstration: The target goal (sound) is shown
with an appropriate action (sound-producing action) and
appropriate object (sound-maker object).

– Action-demonstration: A sound-producing action is dem-
onstrated on a non-sound-maker object.

– Object-demonstration: A non-sound-producing action is
performed on a sound-maker object.

– Negative-demonstration: A non-sound-producing action
is performed on a non-sound-maker object.

Social partner behaviors emerge as a result of differ-
ent demonstration preferences. We consider three behaviors,
summarized in Table 7:

Social partner with same goal: In this case, the goal of the
social partner largely overlaps with that of the learner. The
partner spends a lot of time demonstrating the goal.

Social partner with different goal: Here, the goal of the
partner has a small overlap with the learner and it spends
little time demonstrating the goal. We do not define a par-
ticular goal for this social partner but we assume that it is
related to an effect that is different from sound and that as
a result the sound effect is demonstrated infrequently.

Social partner with focused demonstration: In the third case,
the partner spends most of its time focusing either on the
target action or object, without producing the goal. Focused
demonstration can be considered a typical kind of teaching
behavior. A teacher who is trying to teach a particular ac-
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Fig. 5 Implementation of the social learning mechanisms and their
use of object, action and result information from the social partner’s
demonstration

Table 7 Demonstration type preferences for three social partner be-
haviors

Demo type Same-goal Different-goal Focused-demo

Goal-demo 60% 20% 20%

Action-demo 20% 20% 80/0%

Object-demo 20% 20% 0/80%

Neg.-demo 0% 40% 0%

tion might demonstrate it on an arbitrary object. Similarly,
a teacher might present objects that are known to have use-
ful affordances to the learner but let the learner discover
what actions produce the desired effects on the object.

From the perspective of the learning strategies these dif-
ferent social partners give different amounts of information.
While the same goal partner gives useful information most
of the time for all strategies, the different goal partner rarely
gives useful information. The social partner with focused
demonstrations also gives useful information all the time,
but it is partial. Strategies that pay attention to the wrong
part of their demonstrations, or strategies that pay attention
only when the goal is observed will not benefit from such
partially useful demonstrations.

These social partner behaviors are ones we believe are
fairly generic, and will transfer well to a situation in which a
human is the social partner. Experiments with human train-
ers is left as future work. The goal of this work is to show the
computational differences between strategies in a controlled
learning environment.

5.3 Results of social learning experiments

As in the non-social experiments, the different environments
correspond to different frequencies of sound producing ob-
jects or actions, which we systematically vary. In this sec-
tion we present results from simulation for all environments,
strategies and social partner behaviors.

Performance of social learning with a same goal social
partner is presented in Fig. 6 for environments with different
sound-maker object frequencies and different sound produc-
ing action frequencies. Similarly, performance for learning
with a different goal social partner is given in Fig. 7; and
for learning with a focused demonstrations social partner
is given in Fig. 8. In this section, we analyze these results
with respect to the environments in which each strategy is
preferable. The effect of sound-maker rareness on learning
performance, as determined by one-way ANOVA tests, are
reported on each graph. Additionally, the significance level
of the difference between the two strategies plotted in each
graph according to a T-test are indicated (* for p < 0.05,
** for p < 0.005). The T-tests indicate the difference be-
tween the blind and goal-directed versions of the strategies
that focus on a particular aspect of the learning space (object
space, action space or both).

5.3.1 Comparison with non-social exploration

Comparing Figs. 3 and 6 we observe that social learning
usually outperforms non-social learning. However, when the
learned affordance is not rare, random and novelty-based
exploration have comparably high performance. Non-social
learning in such cases has two advantages: (1) it does not re-
quire social partners and (2) it is less perceptually demand-
ing on the learner in terms of identifying social partners and
perceiving actions performed and objects used.

Additionally, non-social strategies can do better in en-
vironments with high sound-maker frequency when they
are allowed to interact for a longer duration. For in-
stance doubling the number of training interactions raises
the performance of random and novelty-based exploration
to 90–100% in environments with 75% and 50% sound-
makers (Cakmak et al. 2009). Figure 4 also shows that in-
creasing the number of interactions improves the perfor-
mance for non-social exploration especially in environments
with frequent sound-makers. Since there’s no requirement
of a social partner, it’s acceptable to perform non-social ex-
ploration for longer durations to collect more interaction
samples.

5.3.2 Paying attention to objects

As observed in Fig. 6(a), increasing object rareness does not
affect the performance of object focused strategies (stimulus
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Fig. 6 Comparison of social
learning mechanisms for
(a) different sound-maker object
frequencies and (b) different
sound producing action
frequencies. The social partner
has the same goal as the learner

enhancement and emulation) but it significantly reduces the
performance of action focused strategies (mimicking). This
suggests that when the object with the desired affordance is
very rare, it is useful to let the social partner point it out. By
randomly exploring actions on the right object the learner
can discover affordances.

5.3.3 Paying attention to actions

Similarly, when the sound producing actions are rare, doing
the right action becomes crucial. Performance of mimicking

stays high over reducing sound-producing action frequen-
cies (Fig. 6(b)).

Practically, mimicking will often be more powerful than
the object-focused strategies since action spaces are usually
larger than object spaces (which are naturally restricted by
the environment). For instance, the most salient feature com-
bination may be large-red-square, but if there is no such ob-
ject the robot may end up choosing small-red-square. Gen-
erally, all feature combinations are not available in the en-
vironment, but all actions are. In these experiments, action
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Fig. 7 Comparison of social
learning mechanisms for
(a) different sound-maker object
frequencies and (b) different
sound producing action
frequencies; social partner has a
different goal

and object spaces had the same number of possible configu-
rations, thus having similar rareness effects.

5.3.4 Imitation

Following from the previous two cases when everything is
rare the most powerful strategy is imitation. As observed
from Fig. 6 imitation performs well in all environments.
This raises a question as to why imitation should not be
the default strategy. There are two main disadvantages to
always using imitation. First, it is the most computation-

ally demanding for the learner; it requires paying attention
to the context and the action. Second it is also demanding
of the demonstrator. For instance in the case where sound-
maker objects are rare but the sound producing action is not,
the demonstrator can just perform an object-demonstration
rather than a goal-demonstration (Sect. 5.2). A robot could
be equipped with other means for directing the attention of
the learner to the right object without a demonstration. Ex-
amples include pointing to the object, pushing the object to-
wards the learner, shaking the object, gazing at the object or
putting away all other objects.
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Fig. 8 Comparison of social
learning mechanisms for
(a) different sound-maker object
frequencies when the social
partner demonstrates the
sound-maker objects and
(b) different sound producing
action frequencies when the
social partner demonstrates the
sound producing actions without
actually producing
sound—focused demonstration

5.3.5 Paying attention to the goal

The performance of stimulus enhancement and emulation
are very similar in Fig. 6. Likewise there are few signifi-
cant differences between goal-based and blind strategies for
mimicking or imitation. This suggests that when interact-
ing with a social partner with the same goal as the learner,
paying attention to the effect of demonstrations is less im-
portant. The attention of the learner is already attracted to
the object that was interacted with, which happened to also

produce sound since a high fraction of the demonstrations
do so.

If the social partner has a different goal we observe that
the performance of blind strategies is lower than that of goal-
based strategies as shown in Fig. 7. In this case, blindly
copying aspects of the demonstration results in an explo-
ration focused on the wrong objects or actions. In other
words they are misled to uninformative parts of the context
and action spaces. Goal-based strategies, on the other hand,
only pay attention to the social partner’s useful demonstra-
tions. The rest of the time they randomly explore based on
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this useful information and thus have a higher chance to dis-
cover and gain experience with sound-makers.

In Fig. 8 we observe that the performance of the blind
strategies are better than those of the goal-based strategies
when the social partner performs focused demonstrations of
objects or actions without producing the desired effect. The
blind strategies benefit from these demonstrations by being
directed to the right parts of their action or context space
while the goal-based strategies ignore these demonstrations.

We could imagine a teacher providing action demonstra-
tions on an arbitrary object, or simply presenting objects that
are known to have useful affordances to the learner. In such
cases it is useful to trust the teacher even if the goal has
not been observed. By trusting the teacher the learner later
comes to uncover the use of copied actions.

5.4 Asymmetry between object and action spaces

It can be noticed that the performance in similar parts of the
object and action space are not exactly symmetric for similar
behaviors. For instance in Fig. 7, in (a) at high sound-maker
object frequencies the performance of emulation is as high
as 90–100%, whereas in (b) at high sound-producing action
frequencies the performance of goal-directed mimicking is
about 70%. This is due to a subtle difference between the
representation of object and action spaces. The action space
consists of two independent smaller subspaces correspond-
ing to each action. Learning about the parameters of one ac-
tion does not provide any information for the other action
and therefore both actions need to be explored sufficiently.
For instance if the robot is performing a grasp, the values
of poking parameters are meaningless. Additionally the ro-
bot needs to simultaneously learn which action is useful in a
given situation, as well as its parameters. On the other hand
interaction with one object provides information about all at-
tributes in the object space since all objects are represented
with a value for each attribute. This makes the action space
harder to explore than the object space. As a result the per-
formance of object focused strategies in the object space, is
better than the performance of action focused strategies in
the action space.

6 Validation on the physical robots

A simplified version of the simulation experiments were run
on the physical robots as described in Sect. 5. In this section
we first give implementation and experimental details spe-
cific to the physical experiment and then present results that
support our findings from the simulation experiment.

6.1 Implementation

Objects and actions As noted earlier, in practice the ac-
tion space is often much larger than the object space. Ac-
cordingly, in the physical experiments we have 4 objects (2
colors, 2 sizes) and 18 possible actions (poke or grasp, 3
grasp widths, 3 poke speeds and 3 acting distances).

Perception In the real robot experiment the configuration
of objects in the environment is assumed to be fixed. When
the learner decides to interact with a specific object it first
navigates to the a known location that is approximately in
front of the desired object. Then it uses the location of the
object in the camera image and the known neck angle to ad-
just its distance to the object. The objects are detected in
the camera by filtering the image for pre-defined color tem-
plates and finding connected components (blobs) in the fil-
tered image. Features of the desired object (color and size)
are also verified based on the detected blob. Sound detec-
tion is based on pitch thresholding through the microphones
embedded on the webcams. The sound-maker objects have
coins inside which makes them produce a detectable sound
when dropped or tapped.

Perception of the social partner is also simplified in the
physical robot experiment. After each action of the social
partner, the information about the object that was interacted
with, the action that was performed and the outcome of the
interaction (sound/no sound) is sent to the learner by its so-
cial partner.

6.2 Experiments

The experiments are performed in two different environ-
ments where (i) all small objects make sound (50%) and
(ii) only the small green object makes sound (25%). We
consider only two cases in which (i) poke always produces
a sound (50%) and (ii) only one particular set of parame-
ters for the grasp produces a sound and poke does not pro-
duce a sound (∼3%). Thus there are four different learn-
ing settings with different combinations of action and object
sound-making properties.

In the physical experiment there are 72 (4 × 18) possi-
ble test cases (interactions). SVM classifiers are trained in
a batch mode 8 interactions (∼10% of all possible interac-
tions). For each environmental condition, the experiments
are repeated 5 times with random initialization. We report
average performance across these repeated experiments.

As we focus on the effect of asymmetry between the ob-
ject and action spaces in the physical experiment, we exper-
imented with two social strategies that focus on the objects
and actions respectively: stimulus enhancement and blind
mimicking. The social partner in these experiments always
demonstrates the goal.
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Table 8 Recall rate in physical robot experiments

Environment Stim. Enh. B. Mimicking

Act.:50%, Obj.:50% 70% 100%

Act.:50%, Obj.:25% 86% 60%

Act.:3%, Obj.:50% 0% 100%

Act.:3%, Obj.:25% 20% 100%

6.3 Results

Table 8 gives the results of learning in four different environ-
ments for the two strategies. The given results are the aver-
ages over 5 runs of 8 world interactions. The results support
our findings from simulation that the performance of stimu-
lus enhancement is less affected by decreasing sound-maker
percentage, while the performance of mimicking is less af-
fected by the decreasing sound-producing action frequency.
Furthermore, due to the asymmetry in the action and object
spaces in the physical experiments, we observe that the re-
duction in the performance of mimicking is less severe.

7 Generality of results

In this section we address several follow-up items related to
the generality of our results. We identify the limitations of
the results presented so far and provide extensions for these
results in a sample setting. First we consider alternative met-
rics to recall rate (accuracy and correct decision making),
second we consider different classifiers for learning, and fi-
nally we look at the effects of noise on our results.

7.1 Alternate performance metrics

All of the previous results report recall rate. This corre-
sponds to the correct prediction on the set of positive ex-
amples (i.e. examples in which a sound was produced as a
result of the interaction). Although we motivate our choice
of recall rate as the main performance metric in Sect. 7.1.2,
this metric has some limitations. First, in cases where posi-
tive examples are very rare, recall rate reflects a test on very
few samples. Secondly, this metric does not give any infor-
mation about what the classifier will predict for negative in-
teractions. In these respects, another metric of interest is ac-
curacy (i.e., correct prediction on the complete systematic
data set).

7.1.1 Accuracy

We look at accuracy results for both non-social and social
strategies, across environments with different sound-maker
object rareness. In Fig. 9, we see that accuracy remains high

Fig. 9 Comparison of accuracy for non-social learning mechanisms
on different sound-maker object frequencies

or increases for non-social strategies even though we know
from our previous analysis (see Fig. 3(c)) that recall rate
goes down for all three strategies. When positive interac-
tions are rare, the number of positive samples in the data
set collected with non-social exploration has very few or no
positive samples. This results in an overly negative classifier
with a low recall rate. On the other hand, the accuracy of the
classifier is very high since the test set mostly has negative
samples, and the classifier predicts them correctly.

In the social strategies, we primarily see accuracy results
that are complimentary to the recall results. For example,
Fig. 10(b) shows the accuracy of the various social strate-
gies, with a same-goal social partner, as sound-maker ob-
jects become more rare. When sound-makers are rare, we
see that stimulus enhancement and emulation have consis-
tent accuracy results (which agrees with the recall results).
But the accuracy of mimicking goes up with rareness (which
is the inverse of its falling recall performance). This is due
to the classifier’s propensity to predict false, which becomes
more accurate as positive examples become rare.

In both of these examples, the accuracy metric agrees
with the recall rate conclusions about social exploration
strategies. When sound-maker objects are rare, stimulus en-
hancement or emulation would be preferred for their high re-
call rate and relatively high accuracy. Similarly when sound
producing actions are rare mimicking is preferable. What
accuracy tells us in these cases is that the classifier is able
to correctly predict negative cases as well as positive cases.
This is a result of a data set with balanced positive and neg-
ative samples. With imitation on the other hand, we see that
accuracy is quite low. Remember that imitation had excel-
lent performance in the previous experiments, very high re-
call rates across various environments. However, the accu-
racy results show that the classifiers built from the imita-
tion exploration strategies are too positive, and haven’t had
enough experience with the negative space to build a good
model.

In the accuracy analysis of social strategies presented
above, the social partner has the same goal behavior. Sim-
ilar results can be seen for the different goal social part-
ner, with accuracy results complimentary to recall results
in every respect except for imitation. In the case of a dif-
ferent goal partner, goal-based imitation has a low accuracy



Auton Robot (2010) 29: 309–329 325

Fig. 10 Comparison of alternate performance metrics: (a) Recall rate,
(b) Accuracy, and (c) Correct decisions. Results are shown for a same
goal social partner, as the object becomes more rare in the environment

(overly positive) classifier, whereas blind imitation does get
some experience with negative examples and therefore has
a better accuracy.

7.1.2 Correct decisions

Since our end-goal is for the robot to be able to make appro-
priate use of its learned models, another performance metric
we consider is the percentage of “correct decisions” the ro-
bot can make with its classifier. After learning we ask the
robot to “make sound” and measure how often it can suc-
cessfully choose an action-object combination to do so.

In some ways this is the most interesting metric for a
robot learner, and it tests the applicability of the learned
classifiers. For example, a classifier that always predicts ‘no
sound’ may often be correct in terms of prediction, but it
would not be able to produce sound because it does not know
about any action-object pairs that make sound. On the other
hand, a classifier that does predict ‘sound’ in some cases can
decide to perform the interaction that predicts sound with
the highest confidence. To measure correct decision perfor-
mance, we do 100 randomly initialized learning sessions,
and determine how many result in the ability to choose an
action-object pair that makes sound.

When we look at this metric across all of the environ-
ments, exploration strategies and social partner behaviors,

we see that it directly correlates with the recall results. As
one example, Fig. 10(c) shows correct decision performance
in environments with decreasing sound-maker object per-
centage for social learning strategies with a common-goal
social partner. Similarly for other environments and social
partner behaviors, correct decision percentage correlates to
the recall rate. What this says is that even when learning
results in a classifier that is too optimistic, the confidence
about actually positive samples will be higher, so the ro-
bot will make correct decisions by choosing the interaction
for which it is most confident that sound will be produced.
When recall rate is low (that means the classifier recalls
fewer or maybe zero of the available positive interactions)
the chance of making a correct decision will be lower or
zero. Thus recall rate indicates how good the resulting deci-
sion making will be.

7.2 Different classifiers

The results presented in this paper are based on the per-
formance of an SVM classifier trained with the data col-
lected with different exploration strategies in different en-
vironments. In order to investigate the limitations of this
particular choice of classifier we analyze the learning per-
formance of two classifiers other than SVMs: Naive Bayes
classifiers (Langley et al. 1992) and Decision Trees. The
Naive Bayes classifier learns the class-conditional probabil-
ities P(X = xi |C = cj ) of each variable xi (object features
and action parameters) given the class label cj (sound or no
sound). It then uses Bayes’ Rule to compute the probability
of each class given the values of all variables and predicts
the more probable class. A decision tree is a tree structure
that describes the prediction process based on the values of
each variable. Leaves on the tree correspond to predictions
(sound or no sound) and branches correspond to different
values or ranges of variables (object features or action para-
meters). The decision trees are learned using the C4.5 algo-
rithm (Quinlan 1993). We use the WEKA (Hall et al. 2009)
implementation of both classifiers with default parameters.

We trained these classifiers using data obtained with the
different social exploration strategies. We focused on the
particular situation where the social partner has a common
goal and we present results for different sound-maker ob-
ject frequencies while the sound producing property of ac-
tions is kept constant. The recall rates are shown on Fig. 11
and can be compared with the performance of SVM given
in Fig. 10(a).

We observe that the performance of both classifiers are
similar to SVMs, where we see the action focused strategies
drop in recall performance as the as sound-maker objects be-
come more rare. The performance of the Naive Bayes Clas-
sifier takes longer to converge, so it has slightly lower per-
formance in all cases. This difference is more emphasized
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Fig. 11 Comparison of different classifiers

for Stimulus Enhancement and Emulation in environments
with high percentage of sound-makers, which may be due
to several reasons. First, these strategies get exposed to less
positive examples as the social partner is not very helpful
in these environments. Secondly, in these environments the
positive class (sound) is determined by disjunctive variables
(e.g. “all green and orange objects”, Table 2) which takes
more examples to learn since our input representation is es-
sentially conjunctive (i.e. when an object is green it is also
not-orange). The recall rate of Decision Trees is similar to
SVMs in all environments. Even though no assertions can
be made for other classifiers or learning algorithms based on
these results, we demonstrate that three very different clas-
sifiers have very similar performances when using the same
exploration strategy to collect data. The exploration strate-
gies are independent of the learning algorithms. They effect
the content of the data and how good the data set represents
the concept that the classifier is learning. Thus, we can ex-
pect similar effects on other classifiers.

7.3 Effects of noisy data

In all of the simulation experiments presented here, the data
was noise-free. Thus a final analysis we can look at is the
effect of different amounts of noise in sound detection. For
example, 5% noise means that randomly 5% of the interac-
tions will do the opposite of what they were supposed to: if
they were supposed to produce sound they will not, other-
wise they will.

We analyze the effect of noise on learning curves. Fig-
ure 12 shows the effect of 5%, 10% and 20% noise on social
learning mechanisms for a fixed environment (sound-maker
percentage: 17%, sound-producing action percentage: 17%,
social partner behavior: common-goal). We observe that in-
creasing noise reduces the convergence rate of the classi-
fiers. As a consequence, the performance of the classifier at

Fig. 12 Effect of different amounts of noise on learning curves for
social learning strategies

a given instance (e.g. after 28 interactions) is reduced. Simi-
lar results are obtained for different environments and social
partner behaviors. Although the overall performance is de-
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graded by noise, the observations made in the previous ex-
periments holds for noisy data. In other words, the impact
of noise is similar on all strategies and their relative perfor-
mance remains the same in the presence of noise.

8 Discussion

In looking at social versus non-social learning, we see that
social learning often out performs self-learning and is par-
ticularly beneficial when the target of learning is rare (which
confirms prior work Thomaz and Cakmak 2009). However,
when the target is relatively easy to find in the world, then
many of the self-learning strategies had performance on par
with social exploration. One conclusion we draw from this
work is that rather than using one or the other, self and so-
cial learning mechanisms will likely be mutually beneficial
within a single robot learning framework.

The bulk of our results in this work center on the compu-
tational benefits of four biologically inspired social learn-
ing mechanisms: stimulus enhancement, emulation, mim-
icking, and imitation. We demonstrated that each strategy
leads to different learning performance in different environ-
ments. Specifically, we investigated two dimensions of the
environment: (1) the rarity of the learning target, and (2) the
behavior of the social partner. Furthermore, when the learn-
ing target is a rare occurrence in the environment this can be
due to the size of the object (feature) space or the size of the
action space, and we differentiated between these two in our
analyses.

When the rareness of the target is due to the particular
object space, then the mechanisms related to object saliency
(stimulus enhancement, emulation, and imitation) perform
best. These three all do equally well if the social partner is
actively demonstrating the goal. However, if the partner is
demonstrating other goals, or only one aspect of the goal (ei-
ther action or object), then emulation and goal-based imita-
tion outperform stimulus enhancement because they pay at-
tention to the effects of the partner’s action to ignore demon-
strations unrelated to the target learning goal.

Alternatively, in an environment where only a few spe-
cific actions produce the goal, then action oriented mecha-
nisms (mimicking and imitation) are best. Again, when the
social partner is demonstrating the goal, both do equally
well. Otherwise, goal-based mimicking and imitation are
preferred as they pay attention to effects.

Perhaps not surprisingly, goal-based imitation is robust
across all the test environments. This might lead one to con-
clude that it is best to just equip a robot learner with the
imitation strategy. However, there are a number of reasons
that a social robot learner should also consider making use
of non-imitative strategies.

Imitation is not always possible When the agents have dif-
ferent morphologies or different action repertoires, then the
learner may not be able to copy the exact action of the
teacher. In this case emulation is a good strategy, in which
the learner tries to achieve the demonstrated effects using
its own action set. Paying attention to effects as opposed to
blind copying will also be beneficial when there are multiple
goals the robot wants to learn. Various social partners might
share only a subset of these target goals, hence only a portion
of their demonstrations will be useful to the robot. Finally,
requiring full demonstrations of the learning target may be
a burden for the teacher, particularly when this teacher is a
human partner.

Imitation does not take full advantage of a social partner
The learner should be able to make use of full demonstra-
tions when available, but as our results have shown, so-
cial learning is more than just demonstrations. Using non-
imitative mechanisms in conjunction with imitation learning
can let a robot use more of the partner’s input, taking advan-
tage of their presence and interactions in the environment
even when they are not actively giving demonstrations.

Imitation has a positive bias When we compare the strate-
gies based on accuracy instead of recall rate, we find that
imitation has poor accuracy. Having seen a very positive
and small swath of the problem space, imitation results in a
classifier that is too optimistic. The imitation strategy is best
suited for a learning algorithm that is not affected by a data
set that is largely biased in the positive direction. Alterna-
tively, this positive bias could work well within a framework
of self and social learning in which self exploration accumu-
lates negative examples to create a balanced data set.

Thus, it is not surprising that nature endows humans and
animals with a variety of mechanisms for taking advantage
of social partners in the learning process. Our computational
analysis finds that each serve a different purpose in the learn-
ing process, and have benefits over the others depending on
the environment (the rareness of the learning goal and the
behavior of the social partner).

Inspired by biological systems, we conclude that to best
take advantage of a social environment robots need a reper-
toire of social learning mechanisms. In our future work we
are building a framework in which all four of the mech-
anisms presented here can operate simultaneously in con-
junction with self-learning. The challenge becomes appro-
priately switching between strategies. A naïve approach is
to adopt a new strategy when the current one ceases to be
informative. A more sophisticated approach might look for
social or environmental “cues” that indicate what “kind” of
social partner is present and how to best take advantage of
their interactions in the world.
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9 Conclusion

We presented a series of experiments on four social learning
mechanisms: stimulus enhancement, emulation, mimicking,
and imitation. We looked at the task of a robot learning a
sound-making affordance of different objects, while another
robot (a social partner) interacts with the same objects. The
contribution of this work is the articulation of the compu-
tational benefit of these four social learning strategies for a
robot learner. The fact that each strategy has benefits over
others in different situations indicates the importance of a
social learner having a repertoire of strategies available to
take advantage of social partners.
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