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Abstract— How team members are treated influences their
performance in the team and their desire to be a part of the
team in the future. Prior research in human-robot teamwork
proposes fairness definitions for human-robot teaming that are
based on the work completed by each team member. However,
metrics that properly capture people’s perception of fairness
in human-robot teaming remains a research gap. We present
work on assessing how well objective metrics capture people’s
perception of fairness. First, we extend prior fairness metrics
based on team members’ capabilities and workload to a bigger
team. We also develop a new metric to quantify the amount
of time that the robot spends working on the same task as
each person. We conduct an online user study (n=95) and show
that these metrics align with perceived fairness. Importantly, we
discover that there are bleed-over effects in people’s assessment
of fairness. When asked to rate fairness based on the amount
of time that the robot spends working with each person,
participants used two factors (fairness based on the robot’s
time and teammates’ capabilities). This bleed-over effect is
stronger when people are asked to assess fairness based on
capability. From these insights, we propose design guidelines
for algorithms to enable robotic teammates to consider fairness
in its decision-making to maintain positive team social dynamics
and team task performance.

I. INTRODUCTION

With the wide-spread use of artificial intelligence (AI) and
machine learning (ML) in various applications around us,
fairness has become an important focus for researchers ([1],
[2], [3]). Both AI algorithms and robotic teammates make
decisions that can impact groups of people. Inherent in hu-
man group dynamics is fairness ([4], [5], [6]). Prior research
shows that fairness is the foundation of trust and team ef-
fectiveness [7]. In particular, fairness may significantly affect
the team’s efficiency [8]. For example, a teammate who feels
he is being treated unfairly is more likely to perform poorly,
not engage in the task, or treat other teammates badly.

It is only recently that human-robot interaction (HRI)
researchers have started to explore the concept of fairness
in human-robot teaming. Most of the previous human-robot
teaming algorithms focus on solely minimizing objective
metrics of task performance including the human’s idle
time [9], task completion time [10], and the number of
actions to reach the goal state [11]. Claure et al. [12] defined
fairness as a constraint on the minimum rate that each human
teammate is selected to play and showed that poor performers
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Fig. 1. Team scenario used in the user study.

trusted the robot more when given more chances to play.
Chang et al. [13] investigated the effects of a robot’s behavior
that is characterized by fluency (i.e., coordination of actions)
and effort (i.e., tasks that take the most time) on participants’
perception of fairness. They showed that a robot’s effortful
behavior significantly increased participants’ perception of
fairness and proposed objective fairness metrics based on
workload, teammate capabilities, and task type for a single-
robot single-human team. Each of these three metrics assume
that people will perceive a fair situation when different
aspects are balanced (equal): workload is balanced across
teammates; teammates’ abilities are balanced across tasks;
and all teammates work an equal amount on each task.

However, a critical next step towards understanding the
impacts of fairness on team performance is to first ensure that
fairness metrics are capturing people’s perception of fairness.
Achieving this is challenging because fairness is preference-
based [8] and context-dependent ([14], [15]). Working to-
wards this challenge, our approach includes expanding prior
fairness metrics for a single-robot single-human team [13] to
a bigger team. This is based on the literature showing that
people assess fairness by comparing outcomes with others
who are in a similar situation ([14], [15]). In a bigger human-
robot team, humans are more likely to compare themselves
to other humans than to a robot [16]. In addition, within
a larger team, the amount of time that the robot spends
working on the same task as one person versus the other
may influence people’s perception of fairness, which led to
the creation of a new fairness metric. We conduct a user study
via Amazon Mechanical Turk to evaluate how well these
fairness metrics based on workload, capability, and time
capture people’s perception of fairness (Figure 1) and also
discuss implications for robotic teammate algorithm design.



II. RELATED WORK

Fairness is a hallmark of cooperative relationships [17].
Robotic teammates should consider fairness to achieve last-
ing partnerships. The social science literature shows that an
individual’s assessment of fairness depends on the compar-
ison of their outcome to others in a similar situation ([14],
[15]). In addition to caring about one’s own payoffs, indi-
viduals also care about others’ payoffs ([15], [17]).

When an algorithm interacts with or considers more
than one person, such as ML algorithms that are used to
inform the decisions made by humans, fairness comes into
play ([1], [2], [3]). ML algorithms and robotic teammate
algorithms are both making decisions about groups of people
and fairness is an inherent, critical aspect of human group
interactions ([4], [5], [6], [18]). However, research about
fairness in human-robot teaming remains an open challenge.
In the following subsections, we highlight existing work on
fairness in machine learning (Section II-A) and human-robot
teams (Section II-B) along with the role that perspective-
taking plays in fairness (Section II-C).

A. Fairness in Machine Learning

In recent years, fairness in ML has gained prominence as
ML algorithms are increasingly being used to inform critical
decisions in the areas of financial lending, criminal justice,
healthcare, and beyond ([1], [2], [3]). Researchers have
proposed a rich set of fairness definitions that can be used
to design and evaluate ML systems to ensure that biases in
the data and model inaccuracies do not lead to models that
discriminate against people based on sensitive attributes (e.g.,
race, gender, age) ([1], [2], [3], [19], [20], [21]).

These objective fairness definitions are developed by ML
researchers and require some knowledge of ML so it is
unclear if the general public agree and understand them.
This is important because they are the ones who will be
impacted by these systems. Saha et al. [22] conducted an
online study to understand non-experts’ comprehension and
perception of three standard fairness notions (demographic
parity, equal opportunity, and equalized odds). They found
that people had the most difficulty understanding equal
opportunity which involves understanding false negative rate
and false positive rate. Another study investigated how users
collaborate with risk assessment tools, focusing on a tool
that aides judges’ pretrail release decisions ([23], [24]). They
found that participants could not effectively evaluate the risk
assessment’s performance and thus unable to appropriately
rely on the risk assessment.

This rich body of prior work of bias in ML inspires our
work. In our work, we quantify fairness based on each team
member’s contribution to the overall teamwork such as the
extent to which they contribute their skills and time working
with other team members. We seek to understand how well
our metrics match people’s perception of fairness.

B. Fairness in Human-Robot Teams

Many of the human-robot teamwork algorithms optimize
for the team’s task performance and ignore fairness ([9], [10],

[11], [25]), perhaps assuming that optimal task performance
will lead to a high level of perceived fairness (i.e., speed
of finishing the task is ”fair” to everyone). Jung et al. [26]
created a collaborative tower construction task where the
human teammates’ roles are to build the tallest tower using
blocks and the robot’s role is to allocate the blocks. They
studied two conditions (equal vs. unequal distribution) and
found that participants rated the unequal condition to be
significantly lower in terms of team relationship satisfaction.
In a similar resource allocation study where the robot selects
one of two human teammates to play the Tetris game,
Claure et al. [27] designed a multi-arm bandit algorithm with
fairness constraints.

Chang et al. [13] explored the influence of a robot’s
effortful and fluent behavior on people’s perception of fair-
ness. Their results revealed that a robot who displays effort
significantly increased participants’ fairness ratings. They
also proposed three fairness metrics for a single-robot single-
human team: Equality of Workload, Equality of Capability,
and Equality of Task Type. In this paper, we expand Equality
of Capability and Equality of Workload to a bigger team and
propose a new metric based on the robot’s time working with
each human teammate.

C. Perspective-Taking

During interactions, people benefit from their ability to
assume another person’s point of view which is known as
perspective-taking. Prior work in the social sciences show
that social perspective-taking can help achieve fairness [28],
[29]. Heck et al. [30] demonstrated that through affective
perspective-taking, children were able to make fair resource
allocations in both the first-party (participant had a stake in
the outcomes) and third-party scenarios (participant did not
have a stake in the outcomes).

In HRI, one of the earliest works of perspective-taking is
from Trafton et al. [31]. They show that a robot that takes
on the human teammate’s perspective results in successful
collaboration. Zhao et al. [32] showed that people’s tendency
to take on the robot’s visual perspective is dependent on the
robot’s behavior, in particular object-directed gaze and goal-
directed reaching. We leverage these findings about people’s
ability to also take on the robot’s perspective and the role that
perspective-taking plays in people’s assessment of fairness in
the design of our user study.

III. FAIRNESS DEFINITIONS

Chang et al. [13] propose three fairness definitions for a
singe-robot single-human team: Equality of Capability (Ec),
Equality of Task Type (Et ), and Equality of Workload (Ew)
In general, these metrics compare how balanced the work
completed by each team member is. In this paper, we are
interested in expanding Ec and Ew to a single-robot two-
human team. When we add another human to the team, we
now compare the work done by one human to the other
human. This is based on the literature showing that people
assess fairness by comparing outcomes with others who are
in a similar situation ([15], [17]). For most multi-human



robot teams, the humans will compare themselves to other
human teammates because people’s capabilities are more
similar to other people than to a robot (e.g., people are better
at manipulation and creativity but worse at mental math)[16].
Equality of Capability is based on the insight that people
prefer to work on tasks they are good at rather than tasks
they are poor at. Note that preference is an implicit aspect
to Ec, but may be separated out in later work. Formally,
Ec (Equation 1) is defined as equalizing the number of
completed tasks that the human team members are most
skilled at, i.e., strength. Note that we use the terms capability
and strength interchangeably.

Ec =
#(CH1∩SH1)

#SH1
− #(CH2∩SH2)

#SH2
(1)

We denote by #(CHi∩SHi) the number of tasks completed by
human i that is his strength and #SHi is the total number of
possible tasks that are human i’s strength. This means that
only the humans can directly influence Ec. The robot can
indirectly influence Ec by its actions because they impact
the tasks that are available for the humans.

Ew (Equation 2) is defined as equalizing the number of
tasks completed by each human.

Ew =
#CH1−#CH2

#A
(2)

#CHi is the number of tasks completed by human i and #A
is the total number of possible tasks for the team divided by
the total number of team members.

Another way that human teammates may make a compar-
ison is by the amount of time that the robot works on the
same type of task as them versus other human teammates.
Thus, we propose a new fairness notion called Equality of
Time, Etime. Etime is defined as equalizing the amount of time
that the robot spends working on the same task as one of the
human teammates versus the other human (Equation 3). Etime
does not consider the time when all team members work on
the same task.

Etime =
tH1− tH2

tH1 + tH2
(3)

tHi denotes the total amount of time that the robot spends
working on the same task as human i. Note that for Etime,
the robot directly influences this metric unlike in the Ec and
Ep metrics.

These fairness metrics are in the range [−1,1] where
-1 means unfairness towards H2, i.e.,H2 completed all the
work. An equality value of 1 means unfairness towards H1
and 0 means the work was equally shared. These metrics
fluctuate throughout the interaction and are task agnostic.

IV. USER STUDY

We conducted a user study with two goals: 1) Assess how
well Ec and Etime capture people’s perception of fairness and
2) Extract algorithm design guidelines that factor fairness.
The study was between-subjects with |Ec| and |Etime| as
factors and conducted via Amazon Mechanical Turk.

A. Task Description

Participants watched a video that was about 1 minute long
showing animations of a team of one robot and two humans
working together on three types of tasks related to cleaning
and setting up tables in a restaurant (Figure 1). We used
Scratch 3.0 [33] to create the animations. The three task types
were: move empty boxes, vacuum rugs, and cut flowers (to be
used as table decoration). There were a total of six boxes that
need to be moved north (towards the top of the screen), six
rugs that need to be vacuumed, and six bunches of flowers
that need to be cut. When a rug is vacuumed, its colors
change transparency to become lighter. The flower cutting
task involved moving the flowers to the cutting location and
then cutting them.

At the start of the video, there was a description of the
team’s tasks and each team member introduced themselves
including which task they are best at. The human team
members were Chris and Pat. We selected these names
because they are gender-neutral. Chris’ strength was moving
boxes and Pat’s strength was cutting flowers. At the start of
the video, we displayed the following text, “Chris, Pat, and
the robot are on the same team. They need to get all these
jobs done: move boxes, cut flowers, and vacuum rugs. Each
team member chooses what they want to work on.” Next was
Chris’ introduction, “Hi, I am Chris! I am best at moving
empty boxes.” Then it was Pat’s introduction, “Hi, I am Pat!
I am best at cutting flowers.” Finally, Poli introduced itself,
“Hi, I am Poli! I can do all tasks equally well.” Thus, each
person had a separate and different strength, but the robot
could perform all tasks equally well. After the introductions,
we displayed each team member’s strengths at the top right
corner (Figure 1). We controlled for Ew by having each
team member complete 6 tasks, assuming that each task had
similar difficulty. Another control was setting each task to
take the same amount of time, i.e., unit time.

This scenario emphasizes team members having different
strengths, a common situation in real-world environments.
The robot is not allocating tasks to the humans. Note
that each teammate’s action influences the tasks that are
available for the other teammates. After watching the video,
participants completed a questionnaire.

B. Independent Variables

The independent variables (IVs) are |Ec| and |Etime|. We
denote these IVs as Capability and Time. While all fairness
metrics are likely to vary over time, we measured |Ec| and
|Etime| at the end of the scenario, as close to our surveys
as possible. The scenarios were constructed such that |Ec|
had two levels: |Ec| = 0.0 and |Ec| = 0.5. We denote these
levels as Capability Balanced and Capability Unbalanced.
With Capability Balanced, the robot selected the tasks that it
works on in such a way that Chris and Pat can complete the
same number of tasks that they are best at, i.e., strengths.
With Capability Unbalanced, the robot moved more boxes
which left Chris with less of the tasks that he’s best at (boxes)
so in the end, Chris contributed less of his strength to the
team compared to Pat.



Time Chris Pat Robot |Ec| |Etime| |Ew| Time Chris Pat Robot |Ec| |Etime| |Ew|

1 0.0 1.0 0.0 1 0.2 1.0 0.0

2 0.0 1.0 0.0 2 0.3 1.0 0.0

3 0.0 0.3 0.0 3 0.3 1.0 0.0

4 0.0 0.0 0.0 4 0.3 1.0 0.0

5 0.0 0.0 0.0 5 0.2 1.0 0.0

6 0.0 0.0 0.0 6 0.0 1.0 0.0

Time Chris Pat Robot |Ec| |Etime| |Ew| Time Chris Pat Robot |Ec| |Etime| |Ew|

1 0.0 1.0 0.0 1 0.0 1.0 0.0

2 0.2 1.0 0.0 2 0.0 1.0 0.0

3 0.3 1.0 0.0 3 0.0 1.0 0.0

4 0.5 1.0 0.0 4 0.2 1.0 0.0

5 0.7 0.0 0.0 5 0.3 1.0 0.0

6 0.5 0.0 0.0 6 0.5 1.0 0.0

Capability Balanced & Time Balanced Capability Balanced & Time Unbalanced

Capability Unbalanced & Time UnbalancedCapability Unbalanced & Time Balanced

Fig. 2. A table represents a condition in the user study, showing the task that each teammate completed and equality value magnitudes at each time step.
The final equality value magnitudes are highlighted in green. Chris’ strength is moving boxes and Pat’s strength is cutting flowers. The robot’s strength is
all the tasks.

We used a similar approach for the two constructed levels
of |Etime|: |Etime|= 0.0 and |Etime|= 1.0 and are denoted as
Time Balanced and Time Unbalanced. For Time Balanced,
the robot spent the same amount of time working on the same
task as Chris and Pat. For Time Unbalanced, the robot spent
the entire time working on the same task as Chris, i.e., the
robot did not spend any time working with Pat. This resulted
in four conditions which are four team scenarios. Figure 2
details each condition at each time step, showing the task that
each teammate completed and the equality value magnitude.
Note that in the conditions with Capability Unbalanced
and/or Time Unbalanced, unfairness is towards Pat. So, in
the Capability Unbalanced and Time Unbalanced condition,
Pat experienced two types of unfairness: 1) Pat completed
more tasks that he is best at compared to Chris and 2) the
robot spent more time working with Chris than Pat. We chose
these values to provide large differences between conditions;
future studies could examine intermediate or different values.

C. Hypotheses

Overall, our hypotheses are that balancing time and capa-
bility across human teammates will lead to higher perception
of fairness, while an imbalance will lead to a perception
of unfairness. Specifically, we predict that there will be
separation effects and bleed-over effects.

Separation Effects: When queried about how fair the
scenario was with respect to a single dimension of fairness
(e.g., time), people will most likely be able to assess the
specified fairness. For example, when a robot spends much
more time working on the same task as one person than

another person and we ask whether the robot was fair with
respect to equality of time, we expect people to notice the
difference and say that it was unfair.

Bleed-over Effects: When queried about how fair the
scenario was with respect to a single dimension of fairness
(e.g., time), people may also use multiple factors to assess
the specified fairness. In particular, people may consider a
situation where a person has been treated unfairly on multiple
dimensions to have a cumulative effect, even when asked
to judge unfairness on a single dimension. In other words,
we are proposing that people will use multiple factors to
gauge how unfair a scenario is even when asked to focus
on a specific aspect of fairness. Consider the scenario
where the robot spends much more time working on the
same task as one person than another person (unbalanced
time) and one person completes more tasks that he is best at
than the other person (unbalanced capability). There are two
dimensions of unfairness present. If we ask whether the robot
was fair to both humans with respect to equality of time, we
hypothesize that there will be a cumulative effect. That is,
their assessment of unfairness based on time is influenced
by unbalanced time and unbalanced capability. This would
suggest that people are not well able to differentiate between
multiple components of fairness.

D. Dependent Variables

Table I shows the subjective measures we used. For each
of the fairness metrics, we asked participants about their
level of agreement with the metric and their assessment of
the teamwork based on that metric. The questionnaire also



included perspective-taking questions that ask participants to
put themselves in Chris’ and Pat’s roles.

Equality of Workload:
1. Each team member completing the same amount of work is a
fair way to contribute to the team. (Likert)
2. Poli was fair to both Chris and Pat with respect to the amount
of work Chris and Pat were doing. (Likert)
3. Please elaborate on your answer to question #2 above.
Equality of Time:
1. The amount of time that Poli spends working on the same task
as each human teammate should be the same. (Likert)
2. Poli was fair to both Chris and Pat with respect to the amount
of time it spent working with them individually. (Likert)
3. Please elaborate on your answer to question #2 above.
Equality of Capability:
1. Working on tasks that you are best at is a fair way to contribute
to the team. (Likert)
2. Poli was fair to both Chris and Pat with respect to them working
on tasks that they are best at. (Likert)
3. Please elaborate on your answer to question #2 above.
Perspective-Taking
1. Pat was treated fairly by Poli. (Likert)
2. Chris was treated fairly by Poli. (Likert)
Overall Feedback
1. Please provide brief feedback. We are interested in your thoughts
and also if you ran into any problems with any part of the
experiment.

TABLE I
SUBJECTIVE MEASURES ADMINISTERED IN THE USER STUDY (7-POINT

LIKERT ITEMS).

E. Participants

A total of 95 participants (30 females, 65 males, age:
Mean = 38.55, SD = 12.25), participated in the study.
Seventy-seven participants self-reported their race (Cau-
casian/White: 65, Black: 3, African American: 2, American:
1, Hispanic: 1, Hispanic/Latinx: 1, Latino: 1, Mexican: 1,
Mixed: 2). The number of participants in each condition
were: 24 in Capability Balanced and Time Balanced, 22 in
Capability Balanced and Time Unbalanced, 25 in Capabil-
ity Unbalanced and Time Balanced, and 24 in Capability
Unbalanced and Time Unbalanced. The task took about 10
minutes and participants received $2 for compensation. This
study was approved by the Institutional Review Board (IRB).

V. RESULTS

A statistical model based on the 2×2 between-subjects
design with Capability (Ec) and Time (Etime) as factors was
used in the analyses of variance (ANOVA). Tables II and
III show a summary of the results. As a manipulation check
of our control of Ew, we analyzed participants’ agreement
with Ew as a fairness metric. In general, they highly agreed
that each team member completing the same amount of
work is a fair way to contribute to the team as shown by
the non significant results in Table II. For their ratings of
Ew, our analysis also showed no significant results (Figure
3(a), Table II). That is, they perceived the robot to be fair
when they factored in the amount of work that Chris and Pat
completed. These results are expected since Ew was balanced
(equivalent) across conditions.

A. Equality of Time

Participants reported high agreement with equality of time
as a fairness metric, meaning that they agreed that the
amount of time that Poli spends working on the same task
as each human teammate should be the same (Table II). Our
analysis showed significant main effects of Capability and
Time on participants’ judgment of Etime (Figure 3(b), Table
II). As expected, they perceived the Time Balanced condition
(M = 5.59,SD = 1.43) to be significantly fairer than the
Time Unbalanced condition (M = 4.17,SD = 2.29) which
supports our separation effects hypothesis. Additionally, their
perception of Etime was also impacted by fairness based
on capability. They rated the Capability Balanced condition
(M = 5.33,SD = 1.76) to be significantly fairer than the
Capability Unbalanced condition (M = 4.51,SD = 2.17) in
terms of Etime. This suggests that people’s assessment of
fairness with respect to time is impacted by other factors
such as capability in this case, providing support for our
bleed-over effects hypothesis.

B. Equality of Capability

In general, participants highly agreed that equality of
capability, working on tasks that you are best at, is a fair
way to contribute to the team (Table II). Capability and
Time significantly influenced participants’ ratings of Ec as
shown by the significant main effects and interaction (Figure
3(c), Table II). Participants felt that the Capability Balanced
condition (M = 5.61,SD = 1.68) was significantly fairer than
the Capability Unbalanced condition (M = 4.14,SD = 2.28),
supporting our separation effects hypothesis.

In addition, the amount of time that the robot spent with
each human also influenced participants’ ratings of Ec. They
reported higher Ec ratings when the robot spent an equal
amount of time with each human (M = 5.55,SD = 1.63)
in comparison to when the robot spent all its time with
one human (M = 4.11,SD = 2.36). Also, the interaction is
driven by both factors, Capability and Time. This suggests
that when people were asked to rate fairness based on
capability, their assessment is influenced by fairness based
on both capability and time which supports our bleed-over
effects hypothesis. That is, once one type of unfairness exists,
additional types of unfairness increases people’s perception
of unfairness.

C. Perspective-Taking

When we asked participants to take Chris’ perspective,
they thought the robot treated them fairly as seen by the
non significant results in Table III and Figure 4(a). However,
when they were asked to take Pat’s perspective, they felt that
the robot treated them unfairly in terms of the amount of time
it spent working with them (Table III, Figure 4(b)). Note that
in the conditions with Capability Unbalanced and/or Time
Unbalanced, unfairness is towards Pat.

They rated the Time Balanced condition (M = 6.04,SD =
1.31) to be significantly fairer than the Time Unbalanced
condition (M = 4.98,SD = 2.01). These results show that
people noticed a difference when the robot spent an equal
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(c) Equality of Capability
Fig. 3. Cap is the abbreviation of Capability. Ratings were on 7-point Likert items (higher ratings mean more fair).

Ew Agreement Ew Rating Etime Agreement Etime Rating Ec Agreement Ec Rating
Predictor F(1,91) p F(1,91) p F(1,91) p F(1,91) p F(1,91) p F(1,91) p
Capability 0.20 0.65 2.20 0.14 1.83 0.18 4.56 < 0.05 2.80 0.10 14.72 < 0.001
Time 1.82 0.18 1.50 0.22 1.57 0.21 13.60 < 0.001 0.48 0.49 13.92 < 0.001
Capability x Time 0.15 0.70 0.78 0.38 0.29 0.59 1.22 0.27 0.20 0.66 3.92 0.05

TABLE II
SUMMARY OF RESULTS FOR FAIRNESS METRICS.

Chris Treatment Pat Treatment
Predictor F(1,91) p F(1,91) p
Capability 1.50 0.22 2.97 0.09
Time 0.05 0.83 9.50 < 0.01
Capability x Time 0.49 0.49 0.53 0.47

TABLE III
SUMMARY OF RESULTS FOR PERSPECTIVE-TAKING.
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(b) Pat Treatment
Fig. 4. Perspective-taking results (higher ratings mean more fair).

amount of time working with Chris and Pat versus when it
spent all its time working with only Chris. These results also
support our separation hypothesis and show that our Etime
metric does capture people’s perception of fairness.

D. Qualitative Results

Participants’ comments supported our findings of the
bleed-over effects. Participants also factored in capability
even though they were asked to rate fairness based on time.

An example of this bleed-over effect is seen in one of the
participant’s elaboration on their Etime rating after watching
the Capability Balanced and Time Balanced scenario: “Be-
cause Poli (robot) is equally good at all the tasks, it was
able to spend the same amount of time on the box moving
as compared to Chris because Chris is only good at moving
boxes. Since Pat is only good at cutting flowers, Poli would
spend the same amount of time with Pat too because it is
good at all tasks equally.”

The bleed-over effect is stronger when participants as-
sessed the teamwork based on capability. There seems to
be a cumulative effect when people assess fairness based on
capability in the presence of another source of unfairness.
For example, a participant who watched the Capability
Unbalanced and Time Unbalanced scenario explained their
Ec rating as follows, “Pat worked solely on cutting flowers
and that was what he was good at and he did not receive
any help so he spent more time on that task than Chris who
was good at moving boxes but he got help from Poli.”

When participants imagined themselves in Pat’s and Chris’
shoes, they felt that the robot treated Pat unfairly compared
to Chris. A participant in the Capability Balanced and Time
Unbalanced condition commented, “I would not want to feel
left out. I’m sure if this was a real life scenario, Pat would
feel left out because Poli only worked closely with Chris.”

Moreover, from participants’ overall feedback, they no-
ticed the effect of the robot working on the tasks that are
Chris’ and Pat’s strengths. For instance, a participant in
the Capability Unbalanced and Time Unbalanced condition
noted, “If anything, I think Poli might have been unfair to the
person he was helping. The more I think about it, the more I
realize that by helping him with the boxes, Poli robbed Chris



of his chance to do only what he was good at and forced
him to help with a task he was less skilled in.” Another
participant in the same condition’s remark was, “There were
also factors I didn’t know if I should consider like resentment
for someone else receiving help while you have to do your
task alone. It’s a hard thing to judge since every person
would look at the situation differently.”

VI. IMPLICATIONS FOR ALGORITHM DESIGN

In this section, we present algorithm design guidelines to
enable robotic teammates to consider fairness in its decision-
making. Previous robotic teammate algorithms mostly opti-
mize for the team’s task performance and ignore fairness ([9],
[10], [11]). Our fairness metrics aim to balance workload,
teammate abilities, and the amount of time that the robot
spends working on the same task as each person. Note
that only the humans can directly influence Ew and Ec and
the robot can indirectly influence these two metrics by its
actions because they impact the tasks that are available to
the humans. On the other hand, the Etime metric is directly
influenced by the robot’s actions. These equality values
fluctuate throughout the interaction.

In designing robotic teammate algorithms, we recommend
for the overall goal to focus on achieving equality value mag-
nitudes as close to 0 as possible throughout the interaction.
This recommendation is based on our results showing that
for the Ec metric, people perceive equality value magnitudes
equal to 0 to be fair and 0.5 to be unfair. Similarly, people
perceive Etime value magnitudes equal to 0 to be fair and
1.0 to be unfair. Achieving these equality value magni-
tudes is challenging because each teammate’s action impacts
other teammates’ behavior and thus how the interaction
unfolds. For example, existing robotic teammate algorithms
such as ([9], [10], [11]) can add fairness consideration by
calculating the appropriate fairness metrics at each time
step and estimating the future equality value magnitudes.
This means that the algorithm will need to project future
interaction trajectories based on the interaction thus far. The
robot would want to take actions that are within the bounds
of the trajectory that would arrive at the most desirable final
equality value magnitudes.

Critically, the bleed-over effects suggest that algorithms
should aim to be robust to other potential sources of un-
fairness. For instance, an algorithm may be designed to
consider fairness in terms of Ec and Etime only but during the
interaction, other sources of unfairness may occur. Consider
the team scenario that we used in our study. In the situation
where the robot works with different human teammates
who have different capabilities, other potential sources of
unfairness could be due to an unequal amount of human idle
time, task difficulty, and task preference. Depending on the
robot’s role, team composition, and team goal, optimizing
for one fairness metric could result in unintended unfair
perceptions, thus it is important that the designers select
the appropriate metrics. We observed this effect from the
qualitative data about Ec when the robot performs the tasks of
a team mate’s strength to achieve fairness in terms of Ec. This

could be perceived by that teammate as unfairness towards
him. One potential solution is to add weights of importance
for each fairness metric. In general, the algorithm would
need a way to detect these other sources of unfairness and
take actions to mitigate their effects. Finding and modeling
sources of unfairness that are unknown a priori is a difficult
but important future research area.

VII. DISCUSSION AND CONCLUSION

We extend Equality of Capability and Equality of Work-
load to a team of one robot and two humans and also
propose a new metric called Equality of Time that quantifies
the amount of time that the robot spends working on the
same task as one human versus the other. We conducted an
online user study to investigate how well Ec and Etime capture
people’s perception of fairness while controlling for Ew. We
show that in general, people agree that fairness in teamwork
can be assessed based on the human teammates’ contribution
of their strengths, the amount of time that the robot spends
working with each human teammate, and workload. Most
importantly, we show that our fairness metrics do capture
people’s perception of fairness in human-robot teaming.

When people judge fairness in the teamwork based on
the amount of time that the robot spends working on the
same task as each human teammate, they used two factors
in our study. The first factor is the robot’s time working
with each teammate where they perceive balanced time to be
significantly fairer than when the robot only worked solely
with the same teammate which supports our separation
effects hypothesis. The second factor is the amount of each
human teammate’s contribution based on their skill levels.
When there was a balanced contribution of strengths, they
rated fairness based on the robot’s time working with each
teammate to be significantly fairer than when one human
completed all their strength tasks and the other human only
completed half of their strength tasks. That is, they also factor
in Equality of Capability even though they were asked to rate
fairness based on Equality of Time, providing support for our
bleed-over effects hypothesis.

Interestingly, the bleed-over effect increases when partic-
ipants assess how fair the robot was to both humans with
respect to them working on tasks that they are best at.
They thought the robot was fairer when Ec was balanced,
which supports our separation effects hypothesis. In addition,
they thought the robot was fairer when Etime was balanced.
However, when unfairness in terms of both capability and
time is present, people perceived even greater unfairness,
supporting our bleed-over effects hypothesis. This suggests
that there is a cumulative effect when people assess fairness
based on capability in the presence of other sources of
unfairness. We expect that this result will generalize to other
sources of (un)fairness because people are less able to isolate
individual components of unfairness in a situation where
multiple components of unfairness exist.

Even though this study examined fairness from a third per-
spective, research shows that people’s assessment of fairness
is not dependent on being an observer vs. stakeholder due to



perspective-taking [30]. Since people also care about others’
payoffs, people can still be fair even as an observer. When
people were asked to take Chris’ and Pat’s perspectives, they
noticed that the robot treated Pat unfairly because it spent
less time working with Pat compared to working with Chris.
This result is expected since the conditions with unbalanced
time and/or unbalanced capability were unfair towards Pat
and the magnitude of unfairness in terms of time is greater
than capability. Participants also voiced about the potential
negative impacts of unfairness on team social dynamics such
as the lack of inclusiveness.

Based on these insights, we provide design guidelines for
robotic teammate algorithms to achieve fairness. In particu-
lar, we recommend that algorithms aim to achieve equality
value magnitudes as close to 0 as possible throughout the in-
teraction. Another suitable guideline is for robotic teammate
algorithms to be robust to other sources of unfairness that it
is not explicitly considering since people’s assessment of one
specific type of fairness can be influenced by the presence
of other types of unfairness.

Overall, we show that our fairness metrics of Equality
of Capability and Equality of Time do capture people’s
perception of fairness. Our key finding is that there are
bleed-over effects in people’s assessment of fairness. We
also propose robotic teammate algorithm design guidelines
to achieve fairness in human-robot teaming. This work is a
step towards enabling robotic teammates to integrate within
human teams easier and maintain long-lasting partnerships
with human teammates.
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