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Abstract— Robots deployed for long periods of time need
to be able to explore and learn from their environment. One
approach to this problem has been reinforcement learning
(RL), in which robots receive rewards from the environment
that allow them to choose optimal actions. To speed learning
when human supervision is available, interactive reinforcement
learning solicits feedback from a human teacher. However, this
approach typically assumes that learning takes place under
continuous supervision, which is unlikely to hold in long-term
scenarios. We propose an extension to a method of interactive
reinforcement learning, policy shaping, that takes into account
human attention. Our approach enables better performance
while unattended by favoring information-gathering actions
when attended and actions that have received positive feedback
when unattended. We test our approach in both simulation and
on a robot, finding that our method learns faster than policy
shaping and performs more safely than policy shaping while
no one is paying attention to the robot.

I. INTRODUCTION

Robots deployed in home environments can benefit from
long-term interactive learning, which allows humans in the
environment to give a robot feedback over an extended
period of time. One approach to interactive learning has been
interactive reinforcement learning (RL), in which robots re-
ceive both rewards from the environment and feedback from
humans. The combination of rewards and human feedback
enable robots to take into account human preference when
selecting between optimal actions. However, interactive RL
typically assumes that the observing human is continuously
supervising, and thus learning algorithms choose actions and
update their models independently of human attention.

In long-term learning, the assumption that a human will
be constantly available to give feedback is unlikely to hold.
Continuing learning while no one is present can speed
up learning, but can also cause unwanted or dangerous
robot behavior during periods of inattention. In previous
approaches to interactive RL, if no human is available the
robot learns from its environment. In long-term deployment
scenarios, continuing to explore the environment as usual
while no human is observing may not be optimal behavior.
For example, consider a robot deployed in a home, learning
the necessary motions to put away dishes. If the robot has a
good model of putting cups away but is still exploring to find
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more efficient methods, exploring without a person around
to observe and potentially stop the robot is likely to result in
broken glass all over the kitchen. A better approach might
be for the robot to put away cups in a potentially suboptimal
but trusted way when left alone and to only attempt to learn
better actions when supervision is available.

We present an algorithm, attention-modified policy shap-
ing (AMPS), that changes behavior depending on the pres-
ence of human attention. Our algorithm is based on policy
shaping [1], an approach to interactive RL in which the
human provides feedback on actions rather than directly pro-
viding rewards. We define attention as the state of a human
watching and maintaining awareness of a robot’s actions, and
consider the ideal case in which the humans attentional state
is fully observable. During periods of attention, the robot
favors information-gathering actions that allow it to receive
feedback about potentially positive states. When unattended,
the robot favors actions that have previously received positive
feedback during periods of attention. This approach enables
the robot to both learn faster in limited-attention scenarios
by increasing exploration when supervision is available, and
to learn more safely during human inattention by exploiting
known “good” actions when in states that humans have
previously seen and for which they have provided positive
feedback. If there are actions available that a person has
approved, the robot will choose from them.

II. RELATED WORK

AMPS is based on policy shaping (PS), but also integrates
results from human-robot engagement and curiosity-driven
learning. AMPS incorporates human-robot engagement as
it enables the robot to adjust learning styles based on the
presence of human engagement. This modification is related
to curiosity-driven learning, as AMPS performs information-
gathering actions rather than reward-exploiting actions while
a person is paying attention.

Policy shaping is a technique developed to solve a num-
ber of problems with direct reinforcement feedback from
humans [1], [2]. Prior work shows that humans are not
good at giving direct state values or rewards to robots using
reinforcement learning [3]. To address this, Knox’s TAMER
system explored a variety of ways to combine human and
environmental reward signals [4]. So-called policy shaping
has been shown in multiple works to be an effective use
of human feedback[1], [4]. In PS human feedback is taken
as feedback to individual actions rather than an intermedi-
ate reward signal to be combined with the environmental
rewards. This enables people to have a clearer idea of what
their feedback means to the learning algorithm. Although



we use the policy updating method from PS, this prior work
in PS assumes that people are paying attention to the robot
throughout the task and that the robot will behave in the
same way whether a person is attending or not.

Other work in human-robot interaction (HRI) considers
human attention (or engagement) to modify robot behavior
[5]-[7]. However, this engagement work modifies robot
behaviors directly, not changing robot learning styles based
on attention. There has also been work that focuses on robot
rather than human attention, which is used either to convince
people to engage with the robot [8], [9] or to create more
natural social interactions in which the robot shares attention
with a human [10]-[12]. These works focus on keeping
a person’s attention or creating natural interactions with a
person already paying attention, but do not focus on what to
do when no humans are present.

When no person is paying attention, we incorporate
information-gathering actions, as in curiosity-driven learning.
Curiosity-driven learning, also known as intrinsic motivation,
allows learning agents to explore their environment based
on maximizing learning and information potential, not just
maximizing rewards or values [13]-[16]. Previous work by
Oudeyer et al. has combined curiosity-driven learning with
human teachers, creating an agent that chooses whether to
follow human advice or explore, but this work also assumes
that human feedback is always available to the robot [16].

IIT. ALGORITHM

We developed an algorithm that changes which actions the
robot explores depending on a human supervisor’s attentional
state. This algorithm combines RL and policy shaping.

A. REINFORCEMENT LEARNING

We formulate our task as a Markov Decision Process
(MDP), and use Q-Learning, an off-policy reinforcement
learning method [17], which learns Q-values for each state
and action to solve a Markov Decision Process (MDP). An
MDP is defined by (S,A,T,R,Y), where S is a set of states,
A is a set of actions, T is a transition probability function
SxA — Pr[S], R is a reward function S x A — R, and 7 is
a discount factor 0 < y < 1. RL methods attempt to select a
policy w: S xA — R that achieves the maximum expected
reward available in the environment. Q-values Q(s,a) esti-
mate the expected future reward when taking action a € A in
state s € S. We use Boltzmann exploration [18], for which
the probability of taking each action is

(Q(s.a)/7
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We set 7 to 0.5, where 7 is an exploration constant decreased
by 1% each learning episode. The Q-learning parameters o
and 7 are set to 0.1 and 0.9 respectively to maximize the
performance of policy shaping on our chosen problem.

B. POLICY SHAPING

We incorporate policy shaping with Q-learning to add
human feedback. Policy shaping incorporates positive and

while the robot is learning do

follow Q-Learning

if person is paying attention then

with 50% chance, prioritize a & Ageen

if no available actions in Age.,, then
| follow Policy Shaping

end

otherwise prioritize a € Agpoq

if no available actions in Agoq then
| follow Policy Shaping

end

else
| prioritize a € Agpoq
end

end
Algorithm 1: Attention-Modified Policy Shaping

negative feedback from human teachers into policy choices.
Inconsistent human feedback is accounted for by a parameter
C, where C is the probability that any feedback from the
human teacher is correct. In this work, we set C = 0.9,
estimating that the teacher is correct 90% of the time, a
number consistent with if not lower than results seen in our
experimental studies in section V. The probability that any
action in a state is good is

C(ss,a
- Cés,a + (l _C)(Ss,a ’
where &, is the difference between positive and negative

feedback signals that have been received for state s and action
a [1]. The final probability of taking any action is

_ Pry(a)Pr.(a)
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as used in [2].

C. ATTENTION-MODIFIED POLICY SHAPING

Our algorithm chooses actions based on the teacher’s
attention, as shown in Algorithm 1. For each state, the
agent keeps track of the actions that the teacher has seen,
Ageen, and the actions that have received more positive
than negative feedback, Agyoq. In this work, when a person
is paying attention, the algorithm randomly chooses with
0.5 probability between taking an action that provides new
information (the action is not in Agep,), and taking an action
that might lead to a better part of the state space (the action
is in Agpoq). If either Agypq OF Ageen is empty when the agent
attempts to choose an action from the set, the agent follows
the original PS algorithm. When there is no one paying
attention, the agent maximizes the predictability of its actions
by choosing only from a € Ay, following the original PS
algorithm if no such action is available. When the agent
is choosing from a reduced set of possible actions, AMPS
calculates the probabilities of each action using Equation 3
with the reduced set rather than all possible actions.

In this work, periods of attention or inattention are pre-
determined, not sensed by the robot. The assumption of



perfect attention detection allows us to directly compare our
algorithm with policy shaping. In future work, the human’s
attentional state will be taken from noisy perception, as has
been done in prior work [7], [19]-[22].

IV. SIMULATION EXPERIMENT

We compare our algorithm with the prior approach to
policy shaping on a simulated cup placement task. The
robot’s goal is to push a cup to a desired location on a table,
without pushing the cup off the table. This task could be used
to put away cups on a shelf in specific locations; cups on
the edge of a shelf are easier for humans to reach at a later
point. The table is represented by a 6 by 8 grid in simulation.

A. EXPERIMENTAL DESIGN

The goal location for the cup, locg, is on the edge of
the table, at grid square (5,3) with the grid indexed from
zero. This task is well-suited to PS because without human
feedback, reinforcement learning will avoid the edges of the
table during learning since they are near dangerous states.
PS allows people to guide the robot towards locg to allow
faster learning.

We formulate the problem as an MDP with S = (x,y),
the location on the table grid, and A = {north, south, east,
west, end}, where the first four actions represent a push
in that direction and “end” finalizes the position of the
current cup and generates a new cup on the table. For the
transition function 7', each action pushes one grid square in
the specified direction. The reward is +100 for ending on
locg, where this reward is given as the robot pushes the cup
onto the location and taken away if it is pushed off of the
location. There is a penalty of -125 if the cup falls off the
table. All other states have a penalty of -1 to encourage quick
travel to the goal.

To represent the human teacher, we use an oracle that
gives positive feedback when the agent moves towards loc,
and negative feedback when the agent moves away from /oc,.
The oracle has two modes: “attentive” and “inattentive”. The
“inattentive” oracle never gives feedback, while the “atten-
tive” oracle gives feedback 90% of the time, comparable to
a human teacher who may not provide complete feedback
even when paying attention.

=\ 100

Fig. 1. Example task environment

B. EXPERIMENTS

The agent learns the cup placement task using our al-
gorithm and the prior approach to PS. locg and the start
location of the cup (2,1) remain the same throughout.

C. RESULTS

Figure 2 shows the learning curves for our algorithm and
the prior approach to PS with the oracle paying attention
for two sessions of ten episodes. The shaded sections of
the background indicate attention from the oracle. The pro-
posed approach performs comparably to AMPS during the
first round of attention, but strongly outperforms the prior
approach during the period of inattention that follows. In
subsequent episodes without attention, performance is greatly
improved. The average area under the AMPS reward curve
(Mean (M) =7024.025, Standard Deviation (SD) = 548.566)
is 44% greater than the average area under the PS reward
curve (M = 4877.61,SD = 1357.4), t(198) = 14.587,p <
0.05 (using Welch’s t-test). These results suggests that our
approach is learning good actions to take during attention
by exploring the environment and exploiting the oracle’s
feedback, allowing the performance while unattended to be
safer.
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Fig. 2. Total rewards during learning for 100 episodes. All rewards are

averaged over 100 runs. The shaded background indicates attention.

Figure 3 shows the result of adding more attention from
the oracle throughout the learning process. The difference
between the AMPS and PS learning curves decreases as
more attention is added, as PS is able to learn more quickly
by receiving more feedback. When the oracle pays attention
50% of the time, the percent increase between the average
area of PS (M = 5441.34,SD = 775.347) and AMPS (M =
6853.575,8D = 679.433) is 25.95%, 1(198) = 13.63, p <
0.05 (using Welch’s t-test). When the oracle pays attention
for the entire learning process, the percent increase between
the area of PS (M = 6445.975,SD = 546.658) and AMPS
(M = 6832.095,SD = 404.731) is 5.99%, t(198) = 5.6438,
p < 0.05. With more aggressive exploration, PS could po-
tentially achieve the same average rewards as AMPS during
constant attention. However, in addition to faster learning
under intermittent attention, the benefit of AMPS is that
while this method explores during periods of attention, it
falls back to exploitation of human feedback while no one
is paying attention, which enables safer performance.

V. REAL-WORLD EXPERIMENT

We also tested our algorithm with naive users supervising
a robot performing the cup-pushing task in the real world.
The robot pushed a cup on a table divided into a 6 by 8
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(b) Oracle pays attention throughout learning process.
Fig. 3. Total rewards during learning for 100 episodes. All rewards are

averaged over 100 runs. The shaded background indicates attention.

grid, with a goal location on the edge of the table. Refer to
the video attachment to see an example of this experiment.
Based on our simulation results, we hypothesize that AMPS
will achieve higher rewards during periods of inattention and
a greater total reward over all episodes than PS.

Fig. 4. Robot used during experiments.

A. Robot Setup

We used a robot, Poli, with a Kinova JACO arm with 7
degrees of freedom and a Robotiq 2-finger adaptive gripper,
shown in Figure 4. To push the cup, the robot placed its
closed gripper inside the cup and moved it a predetermined
distance forward, backward, right, or left. The state of the cup
was calculated by the position of the gripper over the table by
determining in which grid square the robot’s gripper location
falls. The table was always placed in the same location in
front of the robot.

The robot stated the direction in which it planned to move
the cup before attempting the move. During the task, if the
robot tried to push the cup in a direction but failed due to
the cup catching on the table or a manipulator malfunction,
or the cup fell off the table, we moved the cup to where
the robot expected it to be given the robot’s statement. If
the robot arm caused an error that stopped the learning
process, we restarted learning from the last saved episode.
This only happened once during the experiments, on a round
of inattention. To control the length of the study, we capped
the number of moves per learning episode to twenty pushes.
If twenty pushes were reached, the robot asked for the cup
to be placed back at the start position.

B. EXPERIMENTAL DESIGN

We marked the goal and start locations for the cup on a
tabletop, without explicitly marking the grid. An interface
was provided with a “Bad” and a “Good” button that could
be clicked to send positive or negative feedback to the robot.
After taking an action, the robot waited for a response
and assumed that no response is given after a timeout.
We brought in participants from the campus community to
observe the robot and provide feedback while our robot
learned the cup pushing task. Each participant observed
either the AMPS or PS algorithm. We asked people to click
the “Bad” button if they thought an action was bad and the
“Good” button if they thought an action was good, paying
attention only to the direction of the most recent push action.

Participants gave feedback for the first ten episodes, ig-
nored the robot for five episodes, came back to give feedback
for another four episodes, and let the robot learn on its own
for one more episode. During the periods of inattention,
participants were asked to sit behind a curtain out of view
of the robot, and complete a survey designed to capture how
they were making decisions about feedback. Each participant
looked at an image of a grid with a goal state highlighted in
green, see Figure 5(a). For all 48 grid squares in randomized
order, we asked them to say whether each action choice
(north, east, south, west, and stay) from that square was a
“good,” “bad,” or “neutral” action. After four participants,
two of which were used in our data analysis, we noted that
there was occasional directional confusion, so we made the
instructions more clear by explicitly listing the grid square
the cup would be in before and after the action. In Figure
5 b-e, we show a heat map of the participants’ responses,
where red indicates a low number of “good” markings and
green indicates a high number of “good” markings.

C. RESULTS

Figure 6(b) shows the rewards for each episode over all
participants. Fourteen participants came in for the study,
and four participants were dropped due to robot or hu-
man error. Figure 6(a) shows the average rewards for each
episode over all participants. To find the average rewards for
episodes twenty-one through one hundred and fifty, we save
the robot’s learning progress after each participant leaves,
and then finish learning in simulation using the previously
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described simulation environment. We run the simulation one
hundred times for each user, which gives us the average
performance of both AMPS and PS over multiple trials.
Simulating this process multiple times allows us to show
how our algorithm will be expected to perform on average.

The average area under the AMPS learning curve during
the time that the participant was in the lab (the first twenty
episodes) (M = —127.4,SD = 348.566) is slightly higher
than the average area under the PS curve during the first
twenty episodes. (M = —180.9,SD = 141.216), ¢(8) = 0.285,
p = 0.787. The average area under the AMPS simulated
learning curve from episodes 20-150 (M = 11491.252,SD =
818.651) is higher than the average area under the PS
simulated learning curve (M = 10103.123,SD = 1130.163),
#(8) = 1.989, p = 0.085. Figure 6(b) shows that there is
significant noise in the learning progress of the agent during
the first twenty episodes, caused by random factors in RL
that cause variation in the rewards received early in the
learning process. However, an improvement can still be seen
during the second period of inattention. The area under the
simulated AMPS learning curve also has a lower variance
than that of the simulated PS learning curve.

In Figure 7, we see that algorithm performance for both
AMPS and PS varies with amount of feedback given per user.
The amount of feedback ranges from 47 to 88. The partici-
pants’ feedback to the robot during the experiments closely
matched the feedback of the oracle used in simulation, in
which feedback was positive if the cup moved towards the
goal location and negative if it moved away from the goal
location. The survey responses suggest that the simulation
results are indicative of the performance of the simulator
with a human oracle (see Figure 5). Two participants did not
give feedback for state F8.

VI. DISCUSSION

Our results suggest that the average area under the AMPS
learning curve is consistently higher than the average area
under the PS learning curve. Therefore, after the person stops
paying attention to the robot and leaves the room, the robot
can be expected to perform better on average using AMPS
over PS. The lower variance in the average area under the
AMPS curve may allow more trust in the learning algorithm
overall, as it provides more consistent performance.

In Figure 6(b), the two algorithms perform similarly
during both attention and inattention. We would only expect
AMPS to outperform PS on average during inattention during
early rounds, as shown in simulation, and the first period
of inattention is short. The difference between the two
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Fig. 6.
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algorithms can be seen in Figure 6(a), which shows the
second longer period of inattention. Figure 7 suggests we
would see better performance from both AMPS and PS given
more feedback from users. AMPS may also be sensitive to
the amount of feedback given, as the more positive feedback
it has received, the longer the robot will be able to act without
trying new and unseen actions.

AMPS may more closely match people’s expectations
of how the learning process should proceed. The robot
prioritizes actions that add and confirm task knowledge while
the human teacher is present, and prioritizes listening to
prior positive feedback while no teacher is present. This
behavior is similar to social referencing, which serves a role
in human development by allowing infants to explore new
actions while looking to a trusted authority for feedback [23].

Future work could add more participants to better see the
patterns that emerge on average using AMPS, and test the ef-
fect of adding more people with variable feedback accuracy.
To ensure that AMPS will perform in real-world contexts,
more tasks should be tested in longer-term studies. We plan
to extend this work to use more advanced curiosity-driven
learning methods during periods of attention, rather than only
biasing towards immediate actions that a person has not seen.
Large state spaces could benefit from a similarity metric to
determine what actions to choose, which would allow the
robot to pick from lists of actions that are similar to those
to which a person has given attention or positive feedback.
This metric may allow robots to choose safer actions even
when in previously unexplored areas of the state space.

VII. CONCLUSION

We propose that interactive RL agents should change the
way they learn based on human attention. While robots can
still learn without attention, AMPS allows robots to take
advantage of human attention while attempting to behave
more optimally while unattended. Our results suggest that
exploring new actions and confirming the performance of
positively marked actions while attended and exploiting pre-
viously positively marked actions while unattended produces
safer and more consistent performance than policy shaping.

[1]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” in Advances in neural information processing systems, 2013, pp.
2625-2633.

T. Cederborg, I. Grover, C. L. Isbell, and A. L. Thomaz, “Policy
shaping with human teachers.” in IJCAI, 2015, pp. 3366-3372.

A. L. Thomaz and C. Breazeal, “Teachable robots: Understanding
human teaching behavior to build more effective robot learners,”
Artificial Intelligence, vol. 172, no. 6-7, pp. 716737, 2008.

W. B. Knox and P. Stone, “Tamer: Training an agent manually via
evaluative reinforcement,” in Development and Learning, 2008. ICDL
2008. 7th IEEE International Conference on. 1EEE, 2008, pp. 292—
297.

P. Rani and N. Sarkar, “Operator engagement detection and robot
behavior adaptation in human-robot interaction,” in Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on. 1EEE, 2005, pp. 2051-2056.

Q. Xu, L. Li, and G. Wang, “Designing engagement-aware agents for
multiparty conversations,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ~ACM, 2013, pp. 2233—
2242.

M. P. Michalowski, S. Sabanovic, and R. Simmons, “A spatial model
of engagement for a social robot,” in Advanced Motion Control, 2006.
9th IEEE International Workshop on. 1EEE, 2006, pp. 762-767.

A. Bruce, I. Nourbakhsh, and R. Simmons, “The role of expressiveness
and attention in human-robot interaction,” in Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Conference on,
vol. 4. IEEE, 2002, pp. 4138-4142.

C. L. Sidner, C. Lee, C. D. Kidd, N. Lesh, and C. Rich, “Explorations
in engagement for humans and robots,” Artificial Intelligence, vol. 166,
no. 1-2, pp. 140-164, 2005.

M. W. Doniec, G. Sun, and B. Scassellati, “Active learning of joint
attention,” in Humanoid Robots, 2006 6th IEEE-RAS International
Conference on. 1EEE, 2006, pp. 34-39.

C.-M. Huang and B. Mutlu, “Robot behavior toolkit: generating effec-
tive social behaviors for robots,” in Proceedings of the seventh annual
ACM/IEEE international conference on Human-Robot Interaction.
ACM, 2012, pp. 25-32.

M. Staudte and M. W. Crocker, “Visual attention in spoken human-
robot interaction,” in Human-Robot Interaction (HRI), 2009 4th
ACM/IEEE International Conference on. IEEE, 2009, pp. 77-84.

J. Achiam and S. Sastry, “Surprise-based intrinsic motivation for deep
reinforcement learning,” arXiv preprint arXiv:1703.01732, 2017.

J. Schmidhuber, “Formal theory of creativity, fun, and intrinsic mo-
tivation (1990-2010),” IEEE Transactions on Autonomous Mental
Development, vol. 2, no. 3, pp. 230-247, 2010.

N. Chentanez, A. G. Barto, and S. P. Singh, “Intrinsically motivated
reinforcement learning,” in Advances in neural information processing
systems, 2005, pp. 1281-1288.

P-Y. Oudeyer et al., “Active choice of teachers, learning strategies
and goals for a socially guided intrinsic motivation learner,” Paladyn,
vol. 3, no. 3, pp. 136-146, 2012.

C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279-292, 1992.

C. J. Watkins, “Models of delayed reinforcement learning,” Ph.D.
dissertation, Ph. D. thesis, Cambridge University, 1989.

D. Lala, K. Inoue, P. Milhorat, and T. Kawahara, “Detection of social
signals for recognizing engagement in human-robot interaction,” arXiv
preprint arXiv:1709.10257, 2017.

M. E. Foster, A. Gaschler, and M. Giuliani, “Automatically classifying
user engagement for dynamic multi-party human-robot interaction,”
International Journal of Social Robotics, vol. 9, no. 5, pp. 659-674,
2017.

J. Sanghvi, G. Castellano, I. Leite, A. Pereira, P. W. McOwan, and
A. Paiva, “Automatic analysis of affective postures and body motion to
detect engagement with a game companion,” in Proceedings of the 6th
international conference on Human-robot interaction. ACM, 2011,
pp- 305-312.

C. Rich, B. Ponsler, A. Holroyd, and C. L. Sidner, “Recognizing
engagement in human-robot interaction,” in Human-Robot Interaction
(HRI), 2010 5th ACM/IEEE International Conference on. IEEE, 2010,
pp. 375-382.

S. Feinman, “Social referencing in infancy,” Merrill-Palmer Quarterly
(1982-), pp. 445-470, 1982.



