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Abstract— Stylized motion is prevalent in the field of Human-
Robot Interaction (HRI). Robot designers typically hand craft
or work with professional animators to design behaviors for a
robot that will be communicative or life-like when interacting
with a human partner. A challenge is to apply this stylized
trajectory in varied contexts (e.g. performing a stylized ges-
ture with different end-effector constraints). The goal of this
research is to create useful, task-based motion with variance
that spans the reachable space of the robot and satisfies
constraints, while preserving the “style” of the original motion.
We claim the appropriate representation for adapting and
generalizing a trajectory is not in Cartesian or joint angle
space, but rather in joint velocity space, which allows for
unspecified initial conditions to be supplied by interaction with
the dynamic environment. The benefit of this representation is
that a single trajectory can be extended to accomplish similar
tasks in the world given constraints in the environment. We
present quantitative data using a continuity metric to prove
that, given a stylized initial trajectory, we can create smoother
generalized motion than with traditional techniques such as
cyclic-coordinate descent.

I. INTRODUCTION

In designing autonomous robots to be deployed in human
environments, we recognize that these environments are
inherently dynamic and unpredictable. Achieving autonomy
in such an environment will require adaptation—the ability to
modulate motion to conform to constraints, such as positions
of end-effectors [1], [2].

Ideally we want a solution that does not require a large
set of basis trajectories from which to generalize a new
motion. Additionally, we are interested in the scenario where
an algorithm or a professional animator produces a single
exemplar motion for the robot, from which we automatically
generate a new motion that preserves the “style” inherent
in the exemplar while satisfying some interactive task con-
straints (e.g., end-effector location of a robot arm).

Stylized motion is prevalent in the field of Human-Robot
Interaction (HRI). Robot designers typically hand craft or
work with professional animators to design behaviors for a
robot that will be communicative or life-like when interacting
with a human partner. For example, waving or nodding
gestures for a receptionist robot. Our goal in this work is
two-fold:
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1) We would like to utilize stylized motion designed by
an animator to create life-like robot behaviors for HRI,
but minimize the number of exemplar motions needed
to broadly apply this motion. In this paper we present a
technique that achieves stylized motion generalization
from one exemplar.

2) Additionally, we would like to use stylized motion
even when there are dynamic task constraints. We
present two task constraint examples with our style-
preserving generalization technique. In one, the robot
has a stylized pick-and-place behavior that can be
generalized to any target location. In simulation, we
show that a single a stylized baseball swing motion
can be generalized to hit a ball pitched anywhere.

Motion adaptation in HRI poses unique challenges that
have not been fully addressed in previous methods. Unlike
many methods in computer animation that leverage a large
database of existing motion sequences, the resultant motion
must be autonomously-produced in response to real-time
constraints without the need for manual intervention, includ-
ing manual tuning of parameters. Second, unlike previous
methods in robotics that focus only on functionality, in HRI
applications it is desirable that the adapted motion be similar
to the representative motion, preserving style, continuity, and
smoothness.

In this paper, we propose a computationally efficient, real-
time method that overcomes these challenges by exploit-
ing the representation of velocity profiles and reusing the
information within an existing motion to adapt motion to
satisfy interactive kinematic constraints in the world. We de-
scribe the technique in detail, and compare results to cyclic-
coordinate descent (CCD) for an adaptive pick-and-place
behavior modulated based on real-world 3-D object location.
Given the qualitative nature of our goals, we demonstrate
our results, and we use a continuity metric to show that
our technique produces smoother motion than CCD while
satisfying constraints.

II. DESIGN PROBLEMS FOR ADAPTIVE STYLIZED
MOTION

The goal of this research is to identify a generalizable
motion representation and establish a technique for motion
generation so that motion can be adapted to satisfy world
constraints smoothly in real-time. The approach should be
insensitive to initial conditions and preserve style with mini-
mal amounts of data. In prior work, the necessary pieces for a
generalizable motion representation have not been integrated
with a technique to satisfy constraints and preserve style—
our work fulfills this need.



A. Adaptation

Interpolation (a.k.a. blending, morphing, warping, sam-
pling, or deforming) is a frequent choice to satisfy kinematic
constraints, especially with simple constraints known in
advance, such as end-effector position. The representation
can be motion curves, trajectories, joint angles, sets of
static poses, shapes, photos, surface meshes, functions, or
even video images. However, interpolation is known to lack
coherence to more realistic poses or results in loss of the
motion “aesthetic.” Complexity of the blending approach
increases with number of constraints [3]. Interpolation can
produce unexpected results, and these techniques require
more than just one trajectory, which can be time consuming
to develop.

B. Preserving Style

An excellent way to preserve the style or induce desirable
variance into a motion is to use training data to learn a model
[4], function [5], or distribution [6], [7] of a particular motion
in advance. But, such techniques require large amounts of
input data, and are not easily extensible to other motions
without considerable training.

Style or emotional content can be retargeted from one
motion to another, either via a motion induced due to per-
turbation or pre-defined trajectories using techniques such as
filtering and scaling in the frequency domain and leveraging
differences between multiple high and low dimensional mo-
tion trajectories [8], [9], [10]. However, these techniques to
extract and manipulate the information content of a trajectory
or a set of trajectories must be augmented with a method to
satisfy constraints.

C. The Representation for Motion

Often motion trajectories are specified as a representation
of end effector position over time. Then techniques such as
motion blending, analytical IK, Jacobian inverse, Jacobian
transpose, CCD, gradient methods, least-squares methods,
pseudo-inverse, and neural nets are used to identify directions
to travel to satisfy point constraints and/or create trajectories
in real-time for motion. However, these techniques can
sacrifice continuity in favor of the more important goal of
getting the end-effector to a certain point in Cartesian space.
Also, when the the point constraints are specified outside of
the reach of of the robot, oscillation can occur [11].

Others have recognized the importance of a gradient-
based representation to achieve insensitivity to variations in
the position and scale of related motions [12]. However,
their representation remained in Euclidean space, where
transformation necessary to apply commands to actuators
would be subject to redundancy and multiple solutions.

We claim that the appropriate motion representation for
style-preserving generalization is the velocity profile. Since
actuators are commanded with joint angle positions in most
hardware, the initial condition to any velocity profile remains
unspecified and a free variable. Therefore, this representation
allows command of a scaled velocity profile to begin from

any desired current state, thereby making it an ideal represen-
tation for stylized motion. Storage of trajectories as positions
in joint angle space are specific to one set of states in the
space. Storage of trajectories as positions in end-effector
space potentially span a larger region of the state space due to
redundancy, but the tradeoff is that an end-effector trajectory
cannot be directly applied to the actuators on most robots.
The velocity trajectory combines the extensibility necessary
to span a large region of the state space with the simplicity
of being one linear operation away from direct command as
positions to actuators.

III. RESEARCH PLATFORM

The platform for this research is an upper-torso humanoid
robot we call SIMON (Fig. 1). It has sixteen controllable
DOFs on the body and four controllable DOFs on each hand.
Each arm has seven degrees of freedom (three at the shoulder,
one at the elbow, and three at the wrist) and the torso has two
DOFs, with one additional uncontrollable slave joint in the
torso fore/aft direction. The head DOFs remained unactuated
to produce the results in this paper. The robot operates on a
dedicated ethercat network coupled a real-time PC operating
at a frequency of 1kHz. To maintain the highest level possible
of joint angle position accuracy, the hardware is controlled
with PID gains of very high magnitude. The physics-based,
dynamic model of the robot hardware used to present some
results in this paper is shown in Fig. 1.

Fig. 1. Hardware (left) and simulation (right) of SIMON.

IV. GENERALIZED MOTION ALGORITHM

The algorithm consists of two steps:
1) Kinematic search. Given any kinematic constraint,

such as a point constraint in the Cartesian space, a
set of joint angles that satisfy the kinematic constraint
are computed in real-time.

2) Velocity modulation. Velocity trajectories of each DOF
are modulated so that the trajectory intercepts the joint
angle constraint at the appropriate instant in time.

A. Kinematic Search

Computing a set of joint angles to satisfy a point constraint
is a common problem in robotics and computer animation
and can be solved by many existing methods, such as any
inverse kinematics techniques. The strength of our algorithm,
TSFKS, does not lie in its novelty, but rather its simplicity,
efficiency, and robustness when applied to real-world appli-
cations. Empirical evidence from the lab shows that it works



consistently and remarkably well for producing poses that
appear “natural.”

The two-step forward kinematics search begins with iden-
tification of the DOF limits in joint angle space to bound the
search for a final configuration of joint angles, which always
exists for robot degrees of freedom that have hardware joint
angle limits. In the worst case, the DOF limits are set to be
the joint angle limits of the hardware.

For certain tasks, the kinematic constraint will be defined
only in a localized area, the trajectory will be implemented
only in a subspace of the total reachable space by all robot
degrees of freedom, or a particular DOF will have a closed
form solution. In addition, to reduce computation time, we
exclude DOFs that have minimal influence on the kinematic
constraint from the kinematic search, such as left-arm DOFs
for a right-arm reaching task or wrist DOFs for end-effector
constraint. Less significant DOFs appear in fewer terms in
the kinematic equations relating joint angles to Cartesian
space. Constraining these DOFs to the midpoint of their
range introduces negligible, acceptable error into the final
solution. In these instances, reducing the joint angle space
of possible solutions, allows TSFKS to converge much more
quickly.

TSFKS runs in two steps. First, a coarse search reduces
the joint angle space, and then a refined search locates the
joint angles that satisfy the constraint. During each search,
the reduced joint angle space needs to be quantized by either
the coarse and fine angle increments. The fine adjustment
determines the final error between the end-effector and the
constraint in the world. Different angle increments can be
used for different joints.

The valid joint angle range is sampled for each DOF using
Eq. (1). If a coarse angle increment is, for example, 20% of
the search range for a particular DOF, then only four discrete
values are required for that DOF in the coarse search.

Θ(i) = Θmin +
i

imax
× (Θmax −Θmin) (1)

where,
Θmin = minimum joint angle value in DOF range
Θmax = maximum joint angle value in DOF range
Θ(i) = discrete value for sample i
i = 1, 2, ... up to imax − 1
imax = number of increments that will fit in a joint angle
range

By performing forward kinematics on all possible unique
permutations of discrete values, the set of DOF values that
yields minimum Euclidean distance between the constraint in
the world and the constraint on the robot is kept, denoted as
S. For the refined searched, another set of forward kinematics
calculations is performed using permutations derived from
Eq. (1), where Θmin and Θmax are constrained to the value
returned from S plus or minus one half the coarse angle
increment.

Furthermore, we limit the search to leave a buffer of
10-15% of full range away from the hardware limits to

insure the integrity of the trajectory produced in the velocity
modulation step.

B. Velocity Modulation

After kinematic search, the set of joint angles that satisfy
the kinematic constraint is known. The set of joint angles
at the point when the trajectory was initiated is used as the
initial conditions for the velocity trajectory. If the trajectory
is sampled at equidistant time instances, the sum of all joint
angles up to the time instance of the kinematic constraint
yields a scalar multiplier, given by Eq. (2), which can be
computed for each DOF.

scalar =
(Ψ(tpc)−Ψ(t0))

(Θ(tpc)−Θ(t0))
(2)

where,
Θ(tpc) = joint angle value from original trajectory at the
point in time where the point constraint must be satisfied
Θ(t0) = initial joint angle value at the beginning of the
unmodified trajectory
Ψ(t0) = actual joint angle value of the robot hardware
when the stylized algorithm is initially called
Ψ(tpc) = joint angle value calculated from the kinematic
search step

Eq. (2) yields one solution per DOF, which is used to
multiply the corresponding velocity trajectory for each DOF
in the motion. Along with the initial condition of each
position trajectory for each DOF in the original motion, this
set of scaled velocity trajectories is used to create the new set
of position trajectories, which causes the motion to intercept
the constraint.

We define a cyclic trajectory to be any trajectory that has
a net zero value for the denominator of Eq. (2), such as
a constant position trajectory. For such trajectories, Eq. (2)
does not produce a viable scalar multiplier for a particular
DOF. One alternative to resolve this unique situation is to
select another non-cyclic trajectory.

While no such trajectories are used in our particular
implementation, several strategies could be used to deal with
cyclic trajectories. The problem can be resolved by dividing
the original trajectory into time steps of positive increments
of the joint angle and time steps where the joint angle value
decreases. By scaling time steps in the trajectory where joint
angle value increases by a different scalar than the negative
increments, cyclic trajectories can be easily accommodated.
Alternatively, we can select a different point in time during
the trajectory to satisfy the constraint, or use frequency
modulation instead of amplitude modulation.

V. RESULTS

We first present comparative results with a typical action
trajectory in robot tasks: moving objects. The robot is pro-
vided with point constraints in the world in a sequential or-
der, and the robot transitions between the point constraints ei-
ther with the baseline approach (which is CCD) or our style-
preserving technique. In both techniques, the robot derives



the joint angles necessary to reach these point constraints
with its end-effector autonomously. The point constraint in
3-D coordinates is provided via the robot vision system.
Three point constraints are used to create a complete motion
cycle: home (starting) position, 3-D location to pick up the
object, and 3-D bin location to drop off the object. The object
or the bin are moved to show how the trajectories change
as point constraints vary for both techniques. Additionally
we provide a simulated baseball example using our style-
preserving technique with time varying constraints. These
comparisons are most obvious and evident from the video
submission accompanying this paper.

A. Baseline: CCD

Cyclic coordinate descent searches for the joint angles
to satisfy an end-effector position by traversing a kinematic
hierarchy starting from one extreme, optimizing joint angles
with respect to end-effector location as much as possible
one-by-one. Iteration continues over the chain until satisfying
some stopping criteria, such as within epsilon distance of the
target end-effector location [13].

Since CCD uses single DOF optimizations, joint usage
is unbalanced and certain joints can dominate the resultant
motion trajectory. Also, the result of CCD is dependent upon
the initial conditions of the posture, often requiring multiple
applications to get desirable results. Thus, CCD can result in
trajectories or motions that appear awkward or unusual. CCD
can also drastically change poses for a small end-effector
change. This sensitivity is best exhibited on optimizations
that converge to a set of joint angles near the limits of one
or more joint angles [14].

CCD is selected as the baseline method for comparison
due to fast computation time and very quick convergence in
the case of small changes in constraints differences. Unlike
other techniques, CCD does not require a Jacobian pseudo-
inverse and can compute configurations for kinematic hier-
archies of arbitrarily large sizes. We also require comparison
against a technique that changes performance with different
predefined data. CCD fulfills this requirement because it
is a search algorithm, which produces a trajectory that is
dependent upon initial and final configurations.

B. Smoothness Metric

Since smoothness of a function is determined by the order
of the derivative that remains continuous, ideal smoothness
is infinitely differentiable. However, actuator commands are
discrete values, thereby forcing the trajectory to be a piece-
wise linear approximation of the desired trajectory. If the
interpolation method must remain linear between sample
points, approximations to smooth functions by piecewise
linear functions (PLF) are improved by sampling faster and
adding more intermediate points [15]. Thus, a metric for
comparing smoothness of piecewise linear functions sampled
at constant time intervals is presented by Eq. (3). Normaliza-
tion in Eq. (3) is not required based upon magnitude of the
joint angles because it is a relative computation, comparing
the two tangents at a particular point (one from the right and

one from the left). Trajectories that execute at different rates
are accommodated by the time difference in the denominator
of Eq. (3).

sn =
1

(N − 2)Δt

N−1∑
i=2

∣x(i + 1) + x(i− 1)− 2x(i)∣ (3)

where,
x(i) = discrete value of the PLF at time index i
N = number of discrete points in the PLF
i = time index
Δt = time between samples in PLF, x(t)

A larger value of sn indicates that on average, a PLF
has more unequal tangents in and out of the sample points,
indicating a worse approximation to a smooth function or in
other words, a less smooth function. For the results presented,
sn is used as the metric to compare the continuity of the
trajectories produced by our technique and CCD.

Fig. 2. Trajectory to lift and move a box using CCD.

C. Grasping Example: End-effector Constraints

In Fig. 2, the CCD-generated trajectory begins from the
starting position with the arms at the sides of the robot.
However, since CCD-generated trajectories are sensitive to
initial conditions, in fairness to both algorithms, we shall
only compare the regions of the trajectories between box and
bin, which constitute identical starting and final positions for
both algorithms. Use of this stable, predefined data is what
creates equitable comparison between CCD and the stylized
technique. As shown in the seventh keyframe of Fig. 2, after
lifting the box, the right arm awkwardly uses the elbow and
drops the box from the side of its hand into the bin.

Fig. 3. Trajectory to lift and move a box using CCD.

In Fig. 3, the box location was altered only by a small
amount and noticeable changes to the CCD-produced tra-
jectory result. The most perceptible change is in the sixth



keyframes, where the hand moves a considerable distance
above the box after grasping the box. Additionally, CCD
produces abrupt velocity changes, which are not noticeable
from the keyframes but are obvious in the video accompa-
nying this paper.

Fig. 4. Trajectory to lift and move a box using our style-preserving
technique.

Fig. 4 shows our technique used to modulate the trajectory
according to the kinematic constraints. To demonstrate the
power of this technique, the particular trajectory selected was
one designed by a professional animator, yielding a stylized
grasping motion with ideal smoothness and continuity. Use
of such a trajectory shows that the algorithm is able to
maintain the high quality of the one original motion while
satisfying the constraints.

In Fig. 4, the stylized trajectory begins with the right
arm bent at the elbow because this was part of the orig-
inal motion. However, as previously mentioned, trajectory
comparison will be restricted between common initial and
final configuration, for fairness. Fig. 4 and Fig. 5, which
show slightly different box locations, demonstrate that the
elbow does not move unnecessarily high in either case, the
torso does not exhibit any sudden changes in velocity, and
the torso does not bend too far forward. The robot moves to
its joint angle limit in the sixth keyframe in Fig. 4 and the
fifth keyframe in Fig. 5 to show that the algorithm works
well targeting point constraints outside the bounds of the
reachable space without oscillation. Compared to CCD, our
style-preserving technique drops the box into the bin without
an awkward sideways approach to the bin.

The motivation of this work is to preserve continuity of
a trajectory and re-use the information content contained
in a trajectory to satisfy constraints. Preservation of con-
tinuity is essential because typical “natural” motions are
characterized by continuity in jerk, acceleration, and velocity
[16]. Introduction of discontinuities into the trajectory or
one of its derivatives by a motion modification algorithm
is undesirable, unless the discontinuities are intentionally
introduced for reasons such as holds to draw attention.

We use the smoothness metric in Eq. (3) to compare
our technique to CCD. The visible range of the robot
was discretized into 83 constraints (i.e. target end-effector
locations) that spanned the range of the visible and reachable
space of the hardware. The actual hardware trajectories were

Fig. 5. Trajectory to lift and move a box using our style-preserving
technique.

TABLE I
COMPARISON OF THE CONTINUITY METRIC FOR CCD AND OUR

STYLE-PRESERVING TECHNIQUE (SN × 10000)

DOF CCD Stylized
Torso Y 2.55 1.12
Torso X 2.39 0.36
Shoulder X 0.78 0.64
Shoulder Z 1.34 0.51
Shoulder Y 0.53 0.19
Elbow X 1.27 1.25
Wrist X 0.34 0.32
Wrist Z 0.27 0.21

recorded for the eight DOFs that participate in the one-
armed motion during the random tests. The results for the
average of all 83 trajectories are shown in Table I for each
DOF. Any DOFs excluded from this table did not have
the trajectory modulated for either technique. For all the
trajectories created by our style-preserving technique, the sn
is lower on average for all DOFs, indicating that robot motion
using our style-preserving technique produces motion that is
smoother overall when compared to CCD.

D. Baseball Example: Time Varying Constraints

Our technique is also useful in tasks that have time vary-
ing constraints. We demonstrate this with simulated robot
baseball, where the ball location presents a time varying
constraint to a stylized robot swing trajectory. The search
space for the constraint is very limited to a small range of
Euclidean space because the robot should only swing the
bat if the ball is in the strike zone. TSFKS converges very
quickly with high accuracy for this constrained search space
due to the coarse and fine angle increments being set to
very limited ranges. The bat becomes an extension of the
kinematic structure at a ninety degree angle to the hand.
Both arms are additionally constrained to trajectories dictated
by two end-effector constraints which are separated by a
constant offset. The radius of the bat is small and therefore,
the bat can be represented by a line of finite extent projected
onto the trajectory of the pitched ball.

Currently, our technique has only been tested in simulation
for robot baseball for straight pitches, where the constant



velocity of the pitch and direction of the ball are known
at the moment of release. Assuming the robot is equipped
with the sensing capabilities to determine pitch velocity and
trajectory (which are separate research problems), figs. 6 and
7 demonstrate the appearance of the swing trajectory after
modulation based upon the pitched baseball. figs. 6 and 7
exhibit similar style of the swing despite the batting stance
on the opposite side of the plate. Fig. 8 shows a series of
time instants when the point constraint is satisfied.

Fig. 6. SIMON simulation using our style-preserving technique to modulate
the swing trajectory based upon ball location.

Fig. 7. SIMON simulation using our style-preserving technique to modulate
the swing trajectory based upon ball location.

Fig. 8. Frames from different trajectories of the modulated baseball swing
showing that the constraint can be satisfied.

VI. CONCLUSION

In this work, we have shown that an appropriate rep-
resentation for adapting and generalizing a stylized trajec-
tory is not in Cartesian or joint angle space, but rather
in joint velocity space with initial conditions supplied by
the interactive environment. This allows the motions to be
more readily generalizable and easily applied to actuators
without redundancy in the specification. The benefit of this
representation is that only one trajectory must be given and it
can be extended to accomplish similar tasks in the world by
learning only environment constraints. We create useful, task
based motion with variance that spans the reachable space
of the robot, while satisfying kinematic constraints.

Our representation and technique create motion that is
more smooth than other completely autonomous techniques
such as CCD, provided that the given instance of the single
trajectory being modulated possesses an inherent smooth
quality. Unlike CCD, our technique preserves the notice-
able style of the trajectory while satisfying the constraints,
eliminating unexpected or sudden velocity changes, awkward
motions, or drastic changes in motion due to subtle changes
in end-effector location.
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