
Human-Driven Feature Selection for a Robotic Agent Learning
Classification Tasks from Demonstration

Kalesha Bullard1, Sonia Chernova1, and Andrea L. Thomaz2

Abstract— The state features available to a robot define the
variables on which the learning computation depends. However,
little prior work considers feature selection in the context of
deploying a general-purpose robot able to learn new tasks. In
this work, we explore human-driven feature selection in which
a robotic agent can identify useful features with the aid of a
human user, by extracting information from users about which
features are most informative for discriminating between classes
of objects needed for a given task (e.g. sorting groceries). The
research questions examine (a) whether a domain expert is able
to identify a subset of informative task features, (b) whether
human selected features will enable the agent to classify unseen
examples as accurately as using computational feature selection,
and (c) if the interaction strategy used to elicit the information
from the user impacts the quality of resulting feature selec-
tion. Toward that end, we conducted a user study with 30
participants on campus, given a multi-class classification task
and one of five different approaches for conveying information
about informative features to a robot learner. Our findings
show that when features are semantically interpretable, human
feature selection is effective in LfD scenarios because it is able
to outperform computational methods when there is limited
training data, yet still remains on-par with computational
methods as the training sample size increases.

I. INTRODUCTION

Research on robot learning from demonstration (LfD)
focuses on the development of robots capable of learning
a wide range of tasks from a small number of human
demonstrations. Much of the work in this field is particularly
aimed at the development of general-purpose robots capable
of performing multiple tasks, such as a household robot able
to put away groceries as well as cook a meal, or a service
robot able to execute multiple maintenance procedures. Most
research in this area assumes that a set of features represent-
ing the state of the robot and the surrounding environment
are available to the robot, and that these features are then
applied to learning new actions (e.g., open cabinet) or new
task models (e.g., make coffee) [1].

The state features available to the robotic agent define
the variables on which the learning computation depends.
However, little prior work considers feature selection in the
context of deploying a general-purpose robotic agent able to
learn new tasks. Given a new set of demonstrations, which
features should the agent use to learn? And is it necessary
for the agent to discover informative features on its own or is
there benefit to soliciting the help of a human partner? The
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Fig. 1: Instances selected by user study participant to teach robot
about the specified classes of objects in sort groceries task.

feature selection problem is substantial because a general-
purpose robotic agent may have the ability to track dozens,
or even hundreds, of potential features in its environment,
only a handful of which are likely to be relevant for any
given task, and incorporating too many unnecessary features
leads to poor learning performance. Computational feature
selection techniques [2], [3], [4], which rely on identifying
statistical patterns in data, may not have sufficient evidence
given the small number of training examples encountered
in LfD. In fact, in prior work, all LfD papers we surveyed
used hand-coded state features, with the exception of [5], in
which computational feature selection techniques are applied
to identify relevant features based on human demonstrations
in the games Frogger and Pong.

Our goal is to enable the robotic agent to decipher in-
formative features for any task, using only small number
of examples. Thus in this work, we explore interactive
feature selection in which an agent can identify relevant
features with the aid of a human user. Humans familiar with
a target domain typically have the ability to characterize
which features are important in decision making, at least
at an abstract level. We explore whether non-expert users
are able to identify which features are most informative
for discriminating between classes of objects needed for a
given task, how best to elicit the feature information from
the user, and how computational feature selection compares
to human-driven feature selection given varying amounts of
data. Specifically, we explore three research questions:

1) Is a domain expert able to identify a subset of infor-
mative features for discrimination between classes of
objects needed for a given task?

2) Do features selected by the domain expert enable the
agent to classify unseen examples as accurately as using
computational feature selection techniques?

3) Does the way in which information is elicited from the
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user impact the quality of resulting feature selection?
To address the third research question, we developed three

general categories of approaches for allowing humans to
communicate feature information to the agent:

1) Direct Communication - the user directly communi-
cates about features useful for the task by selecting or
eliminating from a superset of candidate features

2) Indirect Inference - the human teacher selects a small
number of instances from each task-relevant object class
and the learning agent indirectly infers which features
are being communicated by the examples shown

3) Combined Approach - the human teacher both selects
a small number of instances from each object class
as examples and subsequently chooses features being
communicated from a superset of candidate features

To study the above research questions we conducted a
between-subjects user study with 30 participants. Participants
were asked to help a robotic agent discriminate between
four classes of objects needed for a household task, by
communicating about informative features using one of the
interaction strategies above. All users were assumed to have
prior knowledge about the task domain. Our findings show
that (1) human feature selection outperforms computational
methods when there is a small amount of training data and
remains on-par with computational methods as the sample
size grows, (2) direct communication is the most effective
strategy for eliciting feature information from users when
the task features are intuitive, and (3) when a relatively large
amount of training data is available, asking a human teacher
to first select a small number of informative instances then
indirectly inferring the features being communicated leads to
the best performance. We also conducted a follow-on study in
three additional task domains to examine how reliably users
directly communicate informative features; the supplemental
findings show people are able to select useful features for a
task only when the features are semantically interpretable.

II. LEARNING TASK

A. Problem Statement

The problem of learning task features consists of determin-
ing a subset of features for use in building all of the classifiers
needed for the task [1]. In our problem formulation, the
robotic agent is given a set of task-specific labels to be
learned, Y , and the superset of all candidate features, F ,
associated with the observed state of the world. The agent’s
goal is to learn how to classify instances of all the labels
Y . Feature selection then, either by using a computational
approach or by asking questions of a human teacher, can
help the agent determine a subset of features F ′ ⊂ F that
represent a single state space appropriate for all classes Y .

B. Problem Domain

As our running example, we situate a robotic agent within
a kitchen setting, learning to sort groceries, as shown in
Figure 1, presumably in order to be later put away. We define
the sort groceries task as teaching the agent to distinguish
between four object classes (produce, snacks, food cans &
jars, and beverages). For each object instance encountered by
the robot, we compute the superset of all candidate features

TABLE I: High-Level Task Features (per object instance)

absolute location (3-dimensional) of object in environment (3)

orientation (yaw) of object on surface (1)

location of object relative to five specified interest points (15)

location of robot’s base in environment (3)

pose of robot’s two hands (pose quaternion) relative to its body (14)

pose of robot’s two hands (pose quaternion) relative to counter (14)

orientation (yaw) of robot’s base on ground (1)

robot hand states (open or closed) (2)

position for each joint of robot’s 7-dof arms (14)

average color of object (3)

object bounding box size measurements (3)

area of object bounding box (1)

volume of object bounding box (2)

aspect ratio for object bounding box (1)

surface area to volume ratio for object bounding box (1)

compactness of object point cloud (1)

number of SIFT features (measure of visual texture) (1)

max/min/average volume of noise in environment over duration of
learning interaction (3)

weight of object (1)

F based on perceptual information extracted from an RGB-
D image of the object, the object’s relative location to the
robot, the robot’s joint position information at the time, and
audio input from the environment. Table I lists the feature
categories and number of features each decomposes into,
for a total of 84 low-level features. The agent’s goal is to
determine which of the listed features are relevant to its task.

We use the University of Washington RGB-D Object
Dataset to obtain a standard set of object images for testing
[6]. The object dataset includes over 200,000 images in
total, encompassing over 300 objects organized into 51
categories (e.g. soda can), with multiple object instances per
category (e.g. pepsi can, mountain dew can, etc.). For each
object instance, the database contains several hundred images
captured from different viewpoints and distances from the
camera, and some objects in the dataset have been captured
under more than one lighting condition. For the sort groceries
task, we consider only images related to produce (fruits
and vegetables), snacks (food bags, food boxes, and cereal),
food cans & jars, and beverages (water bottles and jugs). In
addition to using the images, we purchased approximately
60 objects from the dataset to use in the user study.

III. COMPUTATIONAL FEATURE SELECTION

In this section, we briefly discuss computational feature
selection methods and establish a baseline for the impact of
feature selection on learning performance in our domain.

A. Algorithm Overview

Feature Selection (FS) aims to eliminate irrelevant and
redundant features such that g : F → F ′, where g is the
feature selection function. In selecting feature subsets, fea-
tures are typically evaluated for relevance or usefulness [2],
[3]. There are three classes of computational approaches
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for automatic feature selection that have been explored in
the literature: filters, wrappers, and embedded methods [4].
Wrappers conduct an exhaustive search through the space of
feature subsets to find an optimal solution, thus are com-
putationally intractable given 84 features and 284 candidate
feature subsets. Filters are the most computationally efficient
class of algorithms but are generally inferior in performance,
since they only consider data and not the learning model.
Embedded algorithms are considered to be state of the art
in computational FS, as they attempt to strike a balance
between learning performance and computational efficiency.
We test filtering and embedded algorithms in this work. In
terms of classifier representation, we selected support vector
machines since they typically perform well with sparse
data and compared learning performance against two other
discriminative classifiers (k-nearest neighbors and random
forests)1. We observed the best performance using an SVM
classifier with a radial basis function kernel. Thus, SVMs are
used for all learned models in this work. Below we briefly
introduce the feature selection techniques employed.

1) Filtering: Filters take as input the training data and
examine the relevance of each feature f ∈ F with respect to
each class label y∈Y . The filtering algorithm (FI) employed
ranks features based upon information gain IG and selects
all features f ∈ F such that IG(Y | f )> τ where τ = 0.

2) Embedded Methods: Embedded methods conduct a
best first search through the space of feature subsets, eval-
uating the usefulness of each subset F ′ ⊂ F with respect to
a given predictor. We use two embedded algorithms in this
work: embedded selection (ES) begins with no features and
incrementally adds (forward selection) whereas embedded
reduction (ER) begins with all features and incrementally
prunes (backward elimination). Both employ a greedy search
strategy and evaluate subset F ′ based upon predictive ability
of each feature f ∈ F ′ and redundancy between them [8].

B. Evaluation
To evaluate the effect of feature selection on our chosen

domain, we compare the performance of the above algo-
rithms with an SVM classifier on the sort groceries task.
For evaluation, we create a test set, Ptest , containing 1000
task-relevant images sampled without replacement using
stratified random sampling (SRS) from the object dataset.
The training set, Ptrain, is similarly sampled to generate
k = 10 disjoint training samples, Di,...,k, each consisting of n
sampled images. We use the following evaluation metric to
evaluate algorithm performance:

E[accD(a)]≈
1
k

k

∑
i=1

1
n ∑

x∈Di

[1−δ (ha
i (x),y)] (1)

where E[accD(a)] represents the expected value of the
learning accuracy using FS approach a with respect to
distribution D, ha

i (x) is the hypothesis of the learner using a
given instance x in training set Di, y is the ground truth label
for instance x, and the quantity δ (ha

i (x),y) is 1 if ha
i (x) 6= y

and 0 otherwise.
We aimed to test the FS approaches, given both small

and large amounts of training data. We select a small

1From the Weka Software Library [7]

(a) Train Set Size = 12 (b) Train Set Size = 100

Fig. 2: Accuracy of computational FS algorithms for classification
of objects in Sort Groceries task. Test Set Size = 1000.

training set size that is reasonable for an LfD scenario
yet still provides enough examples of each task-relevant
object so as to represent some of the diversity of objects
that exists within each category. Given the task-relevant
categories selected are broad (e.g. fruit) and include several
types of objects (e.g. apples, oranges, lemons, etc.), we
decided to test the performance of the learner using at least
three object instances per class or n = 12. Additionally,
we computed accuracy as a function of the training sample
size, in order to understand how much data is needed for
learning performance to converge. This happened after about
25 examples per class or n = 100. Thus Figure 2 reports
results for n= 12 and n= 100 training instances, representing
relatively small and large training sample sizes appropriate
for our task domain.

C. Results
Given both small and large amounts of training data, FS

aids with learning performance. However, the difference in
expected performance between a learner using computational
FS and a learner using no FS is dependent upon the amount
of training data observed. When there is a relatively large
amount of training data, as depicted by Figure 2b, using com-
putational FS yields statistically significantly less error than
using none, no matter which approach is employed. With
only a small amount of training data, overall classification
performance is lower and there is no statistically significant
difference between expected error of learners with no FS and
learners with computational FS.

Hence what we observe is that computational approaches
are limited in their ability to improve learning performance
when there is a small amount of data, since these approaches
are data-driven. Nonetheless in LfD, it is commonly the case
that an agent is provided only a small number of examples
from the human teacher and can leverage only these in order
to learn the task. This motivates the need for other techniques
for acquiring a subset of discriminative features when there
is limited training data available. From this point forward, we
use only FI as the computational baseline for small training
samples and ER as the baseline for large samples, since each
narrowly outperforms the other computational algorithms in
the respective scenarios.

IV. HUMAN-DRIVEN FEATURE SELECTION

In this work, we are interested in enabling a robotic
agent to characterize the essential features of a task when
there are very few training examples to observe, since this
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is typically the case in LfD scenarios. Given limited data,
being more selective about features helps the agent better
discriminate between the object classes relevant to the task;
however computational methods perform poorly when there
is a scarcity of data. In lieu of this, we hypothesize that
humans with task domain knowledge can help the agent by
providing information about what features they believe to be
most informative for the task.

We propose and compare five approaches to determine
how human teachers can best aid with the feature selection
problem. We group the techniques into three categories based
upon interaction style and the type of information they
provide: (1) direct communication of features, (2) indirect
inference of features, and (3) combination of indirect and
direct communication of features.

A. Direct Communication of Features
The first experimental category allows a human teacher

to communicate feature information directly, based upon
what features seem intuitive to the teacher. We explore two
direct communication approaches for eliciting information:
(a) human feature selection (HFS) and (b) human feature
reduction (HFR). For both approaches, the human teacher is
provided a list of hierarchically arranged candidate features
and has the option to choose entire (sub)categories of features
to indicate that every feature in the set should be marked or
alternatively only choose the individual features within the
hierarchical category that are appropriate (e.g. size features
of object: volume, surface area, length, width, and height).
For human feature selection, the teacher’s goal is to provide
only features they believe to be most useful for the agent
in determining which class an unseen object belongs to. In
contrast, for human feature reduction, the teacher’s goal is to
specify features the learning agent should not pay attention
to (i.e. features it should ignore) because they will not help
it determine the class of an unseen object.

B. Indirect Inference of Features
We also realize however that low-level features associated

with robot sensors (e.g. rgb channel intensities) may not all
be intuitive for humans. And people are used to selecting
representative examples to characterize a target concept.
Thus the second category explored involves indirect infer-
ence of features: human instance selection (HIS). With this
approach, the human teacher’s goal is to enable the robotic
agent to distinguish between the classes of objects needed for
the task by providing a small number of examples of each.
The examples selected for each class c ∈C are specifically
intended to help the agent determine which features are most
useful when identifying objects belonging to class c. Then
computational FS is used to infer which features were being
communicated by the training examples selected. As a note,
we only seed the training set with the small number of
examples selected by the teacher; the rest are automatically
generated using SRS.

C. Combined Approach for Conveying Features
Lastly, there are two combined approaches, in which the

teacher’s goal is to first select instances, then follow up
with direct communication of features. The motivation for

this category is to allow the teacher to subsequently reflect
and explicitly communicate to the learning agent what they
were attempting to implicitly highlight through the instances
selected prior. We explore: (a) human instance selection +
human feature selection (HIS-FS) and (b) human instance
selection + human feature reduction (HIS-FR).

D. Evaluation and User Study
We sought to explore three research questions in this work:

(1) whether a domain expert can identify informative task
features, (2) whether human informed feature subsets can
perform as well as computational FS, and (3) if the way in
which feature information is elicited impacts the quality of
the FS. We are especially interested in exploring this for
the LfD scenario, where an agent has limited training data
available, but access to a human teacher. Toward that end, we
have two hypotheses we are testing: (1) humans intuitively
understand and are able to characterize informative features
of a task for which they have prior knowledge, and (2)
humans will do better at characterizing the task indirectly
(selecting representative instances) than directly (enumer-
ating useful features). We hypothesized that people would
be more adept at indirectly communicating features because
some candidate features generated by a robot’s sensors may
not be as intuitive for people, and with that, we would not
necessarily expect the features used by people to map directly
to features generated by robot sensors.

For evaluation, we conducted a between-subjects user
study with 30 participants on Georgia Tech’s campus, to
collect data from humans about what features they would
teach to help a robotic agent differentiate between the task-
relevant object classes. There were three conditions tested
(10 participants per condition): (1) feature selection, (2)
feature reduction, and (3) instance selection. For the study,
all task-relevant objects were grouped by class on a table,
but spaced out sufficiently for participants to see and interact
with individual objects. All objects purchased corresponded
to instances in the object dataset and therefore could be
mapped to a corresponding set of images for processing.

In the first two study conditions (HFS and HFR), partici-
pants are given the option to interact with the objects in any
way they desire in order to help them decide which features
to select or prune. They were also asked to do a brief exit
survey upon completing the teaching task. For the third study
condition (HIS), once three examples per class were selected
by the teacher, all twelve examples are brought to the
robot’s workspace. Figure 1 shows an example of a complete
demonstration for all object classes associated with the sort
groceries task. Then, instead of completing an exit survey,
participants from the third condition were equally subdivided
into two sets. Directly following the selection of instances,
one set was asked to additionally perform feature selection
(HIS-FS); the other, feature reduction (HIS-FR). The order
was not counterbalanced in this condition. We intentionally
requested that each of these participants first communicate
about features in an indirect way by selecting instances, then
communicate features in a direct way by either (a) choosing
relevant features or (b) eliminating irrelevant features.

This study provided the data needed for all five human-
driven FS approaches discussed on the given task. For the
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TABLE II: Source of Training Data and Feature Sets (per User)
n = num instances in training sample

k = num training samples

FS Approach n k Instances Features

None 12 10 SRS All

100 10 SRS

Computational FS 12 10 SRS FI

{ER} 100 10 SRS ER

Direct Communication 12 10 SRS Human

{HFS, HFR} 100 10 SRS

Indirect Inference 12 1 Human ER

{HIS} 100 10 Human + SRS

Combined Approach 12 1 Human Human

{HIS-FS, HIS-FR} 100 10 Human + SRS

HIS approach, we only process the first teaching strategy
used by participants in the third user study condition. The
data for one participant from the instance selection + feature
selection subgroup had to be excluded, thereby leaving data
from 29 users mapped to the interaction strategies as follows:
• HFS: 10 users
• HFR: 10 users
• HIS: 9 users (4 HIS-FS, 5 HIS-FR)

E. Learning Episode

Now that we have experimental data from users around
feature subsets, we need to evaluate the extent to which
the features they indicated are useful in learning the various
classifiers needed for the task. We evaluate learned models
as a function of the number of training instances n, in order
to understand how human-driven feature selection compares
to computational feature selection, given both the small and
large training sample sizes. Table II shows the source for
training instances and selection of feature subsets, using each
category of FS approach.

Specifically, let A be the set of FS approaches and Y the
set of object classes to be learned. Each learning episode
consists of training k|A| models, k different learned models
for each a ∈ A, in each iteration j of the learning episode,
as n increments from n = 12 to n = 100. The reason we
generate k models ∀a ∈ A is because we randomly generate
k disjoint training samples during each iteration j. Thus
for each j, ∀a ∈ A, we take the aggregate performance for
all k learned models generated by approach a, in order to
evaluate the expected performance and variance of a. We
start the episode with n= 3|Y |= 12 examples since that is the
number shown by the teacher, and we selected a termination
point for the learning episode empirically based upon when
learning performance stabilizes. More details are included in
the subsections below.

1) Generation of Training Samples: For indirect and com-
bined approaches, we collected three human demonstrated
examples for each classifier needed for the task. Thus at
the beginning of a learning episode, the training set is a
uniformly distributed sample Di...k,0 containing 3|Y | object
instances, where Di is the ith training sample, Di,0 represents
the initial set for the ith training sample, and |Y | = 4 for

the sort groceries task. For the computational and direct
feature selection approaches, whereby all training instances
are generated using SRS, this corresponds to k = 10 disjoint
initial training sets Di...k,0, each also containing 3|Y | object
instances. For the indirect and combined approaches, where
human teachers have selected the instances, there is only
one initial training set, and it is composed only of the 3|Y |
examples selected by the human teacher; thus k = 1.

After the initial set of 3|Y | training examples, all remaining
n−3|Y | instances are generated using SRS ∀a ∈ A. Thus for
each a, in each subsequent iteration j, a new set of object
instances is sampled from Dtrain such that

∀y ∈ Y,∀i | Di, j← Di, j ∪
{

oy
}

where oy is an object instance belonging to class y. Table II
summarizes the generation of training data ∀a ∈ A.

2) Selection of Feature Subsets: In each iteration of a
learning episode, |Y | new instances are added to the training
sample, {oy|∀y ∈ Y}. Then feature subsets must be selected
by each a ∈ A, and a classifier is trained and tested for
each feature subset. For the computational and indirect
approaches, feature subsets are also dynamically updated in
each iteration. The ER algorithm is used to compute a new
subset of useful features for both, based upon the updated
training set. For the indirect and combined approaches, hu-
man teachers have already provided the subset of informative
features; therefore the feature subset associated with each of
these approaches remains fixed throughout the entire learning
episode and is used for every training sample Di...k.

F. Results
Results in figures 3a and 3b reflect learning performance

for each a∈ A for n = 12 and n = 100 instances respectively,
as computed by Equation 2.

E[accD(a)]≈
1
|Ua| ∑

u∈Ua

1
k

k

∑
i=1

1
n ∑

x∈Du
i

[1−δ (ha
i (x),y)]

 (2)

where Du
i represents a training set that may have either

been completely randomly generated or at least partially
selected by the user u ∈ Ua, the set of users for approach
a. Importantly, learning performance is now averaged across
all u ∈Ua. Where a = no FS or a = computational FS, we
let |Ua| = 1 to denote one oracle that randomly generates
instances for each training sample Di. We used the Mann-
Whitney U-test to compute pairwise statistical significance
comparisons for each pair of FS approaches. However be-
cause there were so many comparisons, the bar graphs in Fig-
ure 3 only highlight the statistical significance relationships
that juxtapose the best performing human-driven approaches
with baseline approaches.

To frame the analysis of results, we are most interested in
exploring human-driven FS approaches for LfD scenarios,
where a robotic agent has limited training data available, but
access to a human teacher. The goal is to determine if we can
leverage the human where there may be insufficient evidence
for computational FS methods to identify discriminative
features. Towards that end, our first hypothesis was that
humans intuitively understand and are able to characterize
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(a) Train Set Size = 12 (b) Train Set Size = 100

Fig. 3: Learning performance of human-driven FS approaches for classification of objects relevant to Sort Groceries task. The task
involves four object classes where each training set has an even distribution of the classes. Test Set Size = 1000.

informative features of a task for which they have prior
domain knowledge.

Looking at figure 3a, with a small amount of training data,
we observe that allowing a human teacher to provide feature
information about the task yields a statistically significant
increase in expected learning performance as compared
to using only a computational approach. Specifically, the
HFS interaction strategy appears to be the most effective
way of eliciting information about useful features from the
human teacher. It also dominates the second best human-
driven interaction strategy, HFR. With a large amount of
training data, computational FS (ER) and the best human-
driven feature selection approaches (HIS and HFS) perform
comparably; all three are statistically significantly better than
a learner with no feature selection. Therefore while humans
are not necessarily needed when there is sufficient training
data available to the learner, the fact that human approaches
are still on par with the best computational approach suggests
that the domain knowledge extracted from humans is both
useful for the learning task and reliable as sample size grows.

Thus, the results support our first hypothesis; with both
small and large sized training samples, human-driven FS
yielded learning performance at least comparable with that
of the best computational FS method. However, our second
hypothesis that people would be better at characterizing
the task indirectly (selecting representative instances) than
directly (enumerating useful features) was not supported.
Direct selection of features (HFS) significantly outperformed
indirect inference of features (HIS) with a small amount
of data and was comparable with both HIS and the best
computational approach with a large amount of training
data. This implies that HFS is the optimal strategy (of those
explored) for eliciting feature information from a human.

All statistical significance relationships are shown in Ta-
bles III and IV. For each approach a ∈ A, N = k|Ua| where
k can be found in Table II. |Ua| for all human-driven ap-
proaches is listed at the end of Subsection IV-D. For each pair
of approaches (cell) and given value of n, the corresponding
table shows the probability p that error(approach a) <
error(approach b). Each row shows which FS approaches

are dominated by a whereas each column shows which
approaches dominate b. So e.g., we observe that the baseline
of no FS is dominated by every FS approach when there is
a large amount of training data available.

G. Additional Task Domains

Our findings from the first experiment contradicted our
second hypothesis that people would be less successful in
directly enumerating informative task features. We believed
this to be at least partially attributable to the features in
the sort groceries task being quite intuitive for people. Thus
we conducted a follow-on study to explore this further; it
consisted of an online survey whereby 48 participants were
given three tasks: (1) playing Pacman for a reinforcement
learning agent [9], (2) autonomous navigation through a
crowded environment for a mobile robot [10], and (3)
classification of fire, smoke, and thermal reflections for a
humanoid firefighting robot [11]. For each task domain, the
participant was shown an image of the domain, then asked
to check off all features they believed to be most useful for
a robotic agent learning to perform the given task.

For each domain, an empirically validated set of useful
features is provided by the source referenced, thus used as
our baseline for comparison. All participants were recruited
from the same population of on-campus students. Table V
lists baseline features selected for each domain. Figure 4 il-
lustrates amount of overlap between human-selected features
and baseline feature subset for each domain, where a feature
was included if selected by at least half of participants.

Fig. 4: Venn Diagrams to show amount of overlap between
selected feature subsets for each task domain, where BL=baseline

set of features empirically validated by source referenced.
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TABLE III: Statistical Significance Relationships
where A = Error(approach a) and B = Error(approach b)

(p-values for n = 12)
∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p < 0.001

H
:A

<
B

b:
N

on
e

(N
=1

0)

b:
E

R
(N

=1
0)

b:
H

FS
(N

=1
00

)

b:
H

FR
(N

=1
00

)

b:
H

IS
(N

=9
0)

b:
H

IS
-F

S
(N

=4
0)

b:
H

IS
-F

R
(N

=5
0)

a:
None

– 0.82 1.0 1.0 0.84 0.99 0.98

a:
ER

0.19 – 1.0 0.99 0.41 0.93 0.93

a:
HFS

*** *** – ** *** 0.09 0.07

a:
HFR

*** *** 1.0 – ** 0.33 0.40

a:
HIS

0.18 0.60 1.0 1.0 – 0.95 0.96

a:
HIS-
FS

* 0.09 0.91 0.67 0.07 – 0.06

a:
HIS-
FR

* 0.08 0.93 0.60 0.06 0.63 –

TABLE IV: Statistical Significance Relationships
where A = Error(approach a) and B = Error(approach b)

(p-values for n = 100)
∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p < 0.001
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S
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=4
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H
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R
(N

=5
0)

a:
None

– 1.0 1.0 1.0 1.0 1.0 1.0

a:
ER

*** – 0.59 0.28 0.87 * **

a:
HFS

*** 0.41 – * 0.94 *** ***

a:
HFR

*** 0.72 0.96 – 1.0 ** **

a:
HIS

*** 0.13 0.06 *** – *** ***

a:
HIS-
FS

*** 0.99 1.0 0.99 1.0 – 0.57

a:
HIS-
FR

*** 0.99 1.0 1.0 1.0 0.43 –

TABLE V: Task Domain Selected Features. Firefighting features
are with respect to pixel intensities from thermal images of scene.

Pacman Navigation Firefighting

grid width / height location / orientation
of robot

mean

grid cell locations speed / direction
robot is traveling

variance

location of walls location / orientation
of each pedestrian

standard deviation

number of ghosts num pedestrians per
square foot, in robot
neighborhood

skewness

location of Pacman /
ghosts / food / cap-
sule(s)

speed / direction each
pedestrian is travel-
ing, relative to robot

dissimilarity

amount of food re-
maining

movement of each
pedestrian towards /
away from / perpen-
dicular to robot

entropy

whether Pacman has
been eaten

correlation

The primary insight extracted from this follow-on study
is that the only task people were not able to characterize
features in a way closely aligned with the computationally
validated baseline (i.e. firefighting classification) is the one
where most of the features selected were difficult to interpret
semantically. For example, skewness of pixel intensities from
thermal images of scene for Firefighting task is more difficult
to understand intuitively than number of ghosts for Pacman
task or location/orientation of robot for Navigation task.

V. DISCUSSION

Our overall findings are summarized in Table VI. It
highlights the highest performing method(s) for selecting a

useful feature subset as we vary two parameters: (1) amount
of training data and (2) use of a human teacher.

DATA
H

U
M

A
N Small Large

No FI ER

Yes HFS HIS, ER, HFS

TABLE VI: Experimental Findings

The bottom row is what we were interested in exploring
in this work. The findings suggests that even without having
yet seen any training examples, a robot learner can leverage
the knowledge of a domain expert to identify a subset of
features useful for constructing a more discriminative task
representation. This supports our first hypothesis that humans
are able to help solve the feature selection problem and are
valuable for LfD domains (bottom left cell), where the agent
learns from a teacher but training data provided is typically
limited. Additionally, we have some insights about successful
and unsuccessful ways to extract this feature information,
when optimizing for classification accuracy.

In considering all five of the strategies we examined for
eliciting feature information from humans teachers, two ap-
proaches emerged as most effective: human feature selection
(HFS) and human instance selection (HIS). HFS outper-
formed all other approaches (both computational and human-
driven) given a small amount of training data; both HIS and
HFS were comparable to computational FS given a large
amount of training data, but neither was able to significantly
outperform the best computational FS approach (ER). Thus
contrary to what we hypothesized, direct communication
about features proved to be the most effective overall strategy
for users. This was further validated in our follow-on study,
providing the insight that users are able to select informative
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features given that the features can be understood intuitively.
Other insights gleaned were HFS always dominated HFR,

and the combined approaches never yielded the best perfor-
mance, as compared to other human-driven approaches. In
future work, we can explore why we observe these trends.

VI. RELATED WORK

Feature Selection for robots and intelligent agents has
been previously explored in the literature for several problem
domains: mobile robot navigation [12], [13], [14], [10];
simulated autonomous car driving [15], [13], [16]; emotion
state classification for a nursing robot [17]; robot soccer
and multi-robot domains [18]; gas identification [19] and
fire hazard classification [11] for search and rescue; and
grasp classification [20], [21]. Nonetheless, most works have
looked at enabling a robot to automatically select features
using computational algorithms with no human in the loop.

There has also been work within robotics that looks
at requesting feature information from a human teacher.
Embodied feature queries were introduced by [22] for a robot
learning a skill from demonstration by a human teacher. The
work focuses on enabling a robot to generate three types of
queries using its embodiment where the query types each
aim to reduce uncertainty with respect to a different part
of the skill learning problem. In contrast, our focus is to
examine the efficacy of different natural language question
types towards acquiring the same information: a useful set of
features to sufficiently characterize the given task. Rosenthal
et.al. recommend FS as one of the dimensions a robot should
request information about when formulating a question, to
provide sufficient context to a human [23], but do not explore
how to elicit this information.

The most closely aligned work has explored the use of
automatic feature selection for learning a task policy from
human demonstrations [5]. The abstraction by demonstration
algorithm enables an agent to infer relevant features for
the human policy based upon demonstrations given. Though
this work is similar in that it seeks to learn informative
feature subsets through human provided examples, our work
differs in two ways: (1) we seek to determine the most
effective approach for eliciting feature information from
human teachers and (2) we compare the efficacy human-
driven FS approaches to computational FS approaches.

VII. CONCLUSION

Enabling robots to request the most useful features for
characterizing a task is an important step toward autonomous
task model construction. With only a small amount of data,
computational feature selection approaches are limited in
their ability to output the most useful features for discriminat-
ing between classes of objects needed for a task. Therefore,
using computational feature selection as a baseline, this work
explored: (1) whether a human teacher is able to characterize
the most informative features of a classification task as accu-
rately as computational approaches and (2) the best way to
extract this feature information from the teacher. Our results
suggest that a human teacher can directly select a subset of
features that will be informative for discriminating between
the task-relevant object classes given that the features are
semantically interpretable. And in the case that the learning

agent has either no or a small number of training examples,
we can expect the subset selected by a human teacher to be
more useful for classifying unseen task-relevant objects than
that selected by a computational feature selection algorithm.
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