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Abstract— Active learning literature has explored the selec-
tion of optimal queries by a learning agent with respect to
given criteria, but prior work in classification has focused
only on obtaining labels for queried samples. In contrast,
proficient learners, like humans, integrate multiple forms of
information during learning. This work seeks to enable an active
learner to reason about multiple query types concurrently,
aimed at soliciting both instance and feature information from
the teacher, and to autonomously arbitrate between queries
of different types. We contribute the design of rule-based
and decision-theoretic arbitration strategies and evaluate all
against baselines of more traditional passive and active learning.
Our findings show that all arbitration strategies lead to more
efficient learning, compared to the baselines. Moreover, given a
dynamically changing environment and constrained questioning
budget (typical in human settings), the decision-theoretic strat-
egy statistically outperforms all other methods since it reasons
about both what query to make and when to make a query, in
order to most effectively utilize its questioning budget.

I. INTRODUCTION

The paradigm of Learning from Demonstration (LfD)
enables an agent to learn a new task from examples provided
by a human teacher [1]. In LfD however, the model learned
depends on the ability of the teacher to provide appropriate
examples to the learner. Placing the primary burden of con-
veying maximally informative input on the teacher presents
an inherent challenge, as it is not feasible to expect every
human with task domain knowledge to also understand how
an agent models the task and be proficient at teaching it.
Yet we want to leverage the domain knowledge of any user,
independent of teaching skills. Therefore we seek to enable
a learning agent to characterize its own uncertainty and
autonomously solicit information it needs from the teacher to
resolve that uncertainty, thus a collaborator in the learning.

Student-driven agent learning has primarily been encom-
passed by the field of active learning (AL). Using AL
techniques, an agent autonomously selects unlabeled training
examples, based upon predetermined selection criteria, and
queries an oracle for correct labels [2], [3]. In high-level task
LfD, related literature has focused on learning an optimal
policy for imitating a human demonstrator’s behavior [4],
[5], symbol grounding [6], [7], and inferring task constraints
[8]. Importantly, the previous work has primarily focused on
making one specific type of AL query towards generalization
along that dimension of the task (e.g. taking the optimal
action in a state). However, there is a wealth of information
an agent can acquire from a human’s domain knowledge.
And proficient learners, like humans, combine information
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rather than simply focusing on one type of question. This
work is the first to contribute algorithms for enabling an
AL agent to arbitrate between diverse types of queries, with
the goal of autonomously gathering both informative features
and representative instances from the human teacher.

In this work, AL is used to solve a task-situated symbol
grounding problem. Symbol grounding is the problem of
mapping symbolic representations (labels, concepts) to con-
structs in the physical world [9]. Assuming no prior knowl-
edge, the robotic learning agent is given a task (e.g. serving
pasta) and with it, task-relevant concepts (e.g. cooking pot,
pasta sauce) it must ground, in order to later perform the
task in the situated environment. The agent learns to ground
the concepts by actively querying its human partner.

The primary contributions of the work are (1) investigating
whether enabling a learning agent with strategies for arbitrat-
ing between diverse types of AL queries improves learning
performance, (2) exploring the design of rule-based (RB)
and decision-theoretic (DT) arbitration strategies that enable
the agent to acquire and appropriately prioritize feature and
instance information useful for the given task, and (3) analyz-
ing the tradeoffs between rule-based and decision-theoretic
strategies with respect to learning performance in the agent’s
situated environment. We conducted an experiment compar-
ing five query arbitration strategies, each gathering both fea-
ture and instance information by employing multiple query
types, against two baseline approaches for making requests
that each only obtain training instances by employing queries
of one type. The evaluation was conducted on two tasks
consisting of different computer vision datasets. Our findings
showed that all RB and DT strategies outperformed both
baselines on both tasks. We also found the DT strategy
was able to consistently perform at least as well as all RB
strategies but had an advantage in that it could additionally
reason about when to make queries. Thus in the task where
environmental change was both more gradual and substantial,
similar to many real-world environments, the DT strategy
statistically significantly outperformed all other strategies
by its ability to adapt to the rate of environmental change
and distribute its questions over time, thereby minimizing
uninformative requests and acquiring a more representative
training sample than any other strategy.

II. RELATED WORK

As motivated in the introduction, we are interested in a
self-driven learning agent who can leverage the expertise of
its human partner in order to acquire the information it needs,
by asking questions. Within machine learning literature, this
is primarily addressed by AL. Our work is inspired by the
scenario of a robot assistant able to acquire groundings
necessary for later performing a task in the situated envi-
ronment. For task learning, AL can enable a robot to both



resolve unintended ambiguities during the learning process
and explore unseen parts of the state space, in order to
create a more generalized task representation. Related work
on AL for robots has explored the learning of low-level
action controllers [10], [11], [12], an optimal policy towards
the end of imitating a human demonstrator’s behavior [4],
[5], grounding of goal state symbols [7], inferring task
sequencing constraints [8], and retrieval of objects by the use
of curiosity in human-robot dialog [13]. There has also been
related work on strategies for introspective and extrospective
detection and communication of the learner’s knowledge
gaps [14]. All of this previous work however has focused
on asking one specific type of query towards generalization
along that dimension of the task.

More closely aligned work includes the proposal of a
framework with three types of embodied queries: label,
demonstration, and feature queries. It characterizes the value
of each in the context of learning lower-level motion tra-
jectories [15]. Yet this work by Cakmak and Thomaz does
not include arbitration between the query types, and the
entire framework has not yet been applied to the domain of
high-level task learning. Additional work within the robotics
community looks at requesting feature information from a
user. Rosenthal et. al. [16] recommend feature selection as
a specific aspect which should be included when asking a
question, in order to provide transparency to the human part-
ner; however it does not include an algorithm for enabling
the agent to autonomously reason about when to request
feature information. Bullard et. al. [17] compare five different
approaches for eliciting informative feature subsets from a
human teacher and provide insights about the most effective
ways to request features from the teacher. Though we can
leverage insights from the findings of both, the contribution
of this work is in arbitrating between several types of AL
queries within one coherent questioning framework, such that
the learning agent is able to reason about both employing
multiple types of questions and acquiring diverse types of
information from its human partner.

III. PROBLEM FORMULATION AND OVERVIEW

In our problem formulation, the AL agent must solve a
task-situated symbol grounding problem, defined by [18],
in which it must map abstract object symbols to percep-
tual input associated with physical entities in the agent’s
environment. Given a set of objects O from a scene in
the agent’s purview, each object o € O is represented by
a feature vector X =< fj...f,, >. Objects are modeled by
the superset of features F extracted from the robot’s sensors
(e.g. color, height). A set of binary classifiers, one for each
symbol y € Y, the set of object symbols, each take as input an
instance x and produce a degree of confidence p(y|x) = [0, 1]
that x has label y. For each symbol to be learned, a binary
Gaussian process classifier with a radial basis function kernel
is trained. This representation was selected because of its
efficacy in producing probabilistic predictions of unlabeled
instances given only sparse training data.

A. Query Types
To acquire input data, the learning agent must query the
human teacher. We utilize three types of candidate queries,

which map to two different types of input data to be
processed by the symbol grounding models: (1) instances
and (2) features. Figure 1 illustrates what type of input data
each AL query type provides.
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Fig. 1: High-level system diagram mapping query types to type
of input each provides and system modules processing the data.

1) Demonstration Queries: Demonstration (or demo)
queries (DQ), analogous to active class selection [19], in-
volve the learner requesting a new demonstration of how a
concept (symbol) is embodied in the physical world. DQs
provide new instances to the system with each demonstra-
tion selected by the teacher; the learner is responsible for
communicating which symbol it requires a demonstration of.

2) Label Queries: Label queries (LQ), are synonymous
to membership or instance queries extensively explored in
AL literature [20], [3], [6], [7], [21]. The learner selects an
unlabeled instance, based upon predefined selection criteria,
and requests the correct label from the teacher. LQs provide
new instances to the system as well, but the instances have
been specifically targeted and selected by the learner.

3) Feature Subset Queries: Feature subset queries (FSQ)
involve the learner requesting a subset of features useful for
discriminating between the task-relevant classes; the teacher
selects the features. We employ the human feature selection
(HFS) approach introduced in prior work and found to be
most effective in eliciting feature subsets from humans [17].

B. Learning Episode

The agent uses a single questioning strategy § throughout
the entire learning episode. The episode begins with the
teacher specifying the task and all relevant symbols to be
grounded. At each turn 7 in the episode, the learner observes
the state of the world, extracting perceptual input for all
objects in the scene. The set of candidate queries consists of
(a) one DQ associated with each symbol classifier, (b) one
LQ for each object in the scene, and (c) one FSQ, which
we constrain to a one-time query, since the answer is not
expected to change over time. The learner uses § to select a
query to make at #, makes the query, then receives teacher
feedback. If it receives a new instance, the instance is added
to the training set of every symbol classifier (either as a
positive or negative example). If provided with a subset of
features, it updates all classifiers y €Y to only consider hu-
man selected features from that point in the episode. Lastly,
the agent checks stopping criteria to determine whether to
continue or end the episode.

IV. QUESTION-ASKING STRATEGIES

Our goal was to assess the impact of three separate aspects
on the agent’s ability to learn the task-relevant concepts: (1)
the ability to acquire diverse types of information, (2) the



assignment of priorities to the query types, and (3) the ability
to determine when to ask questions. Towards that end, we
explore (1) two baseline strategies each making queries of
one type, (2) random selection between queries of diverse
types, and (3) two categories of experimental strategies for
arbitration (rule-based and decision-theoretic).

A. Baseline Query Selection

Each baseline strategy, employs one query type and ac-
quires only training instances from the teacher, as is typical
in interactive learning. Neither has the ability to explicitly
reason about when to make queries; they simply acquire data
at every turn, until the learning episode concludes.

1. BL: passive (P) — Employing only DQs essentially re-
duces to the traditional LfD scenario, or passive learning,
whereby the teacher continually selects examples and the
learner passively observes.

2. BL: active (A) — Employing only LQs essentially reduces
to traditional AL, whereby the agent continually selects
unlabeled instances according to predefined criteria (e.g.
uncertainty) and the teacher provides requested labels.

Passive learning is simulated using stratified random sam-
pling from a generated task dataset. Uncertainty sampling
[20], [3] is used for the active baseline, measured as entropy
H of object instance x in the scene. It is computed by:

H(ylx) ==Y Po(y|x)logPs(y|x) (1)
yey

B. Arbitration Strategies

The simplest arbitration strategy we employ is random
query selection (R). Given candidate queries of all types,
R simply randomly selects one, at each turn. After a feature
subset has been requested using HFS, it will select between
only DQs and LQs. We validate this strategy to differentiate
the relative benefits of multiple query types from the ordering
effects of the experimental arbitration strategies.

Our experimental approach is inspired by Dialog Manage-
ment literature, which has traditionally employed rule-based
and data-driven approaches for action selection. In keeping
with this, we explore two different classes of algorithms for
the design of the experimental arbitration strategies.

Experimental: Rule-Based Arbitration

The prioritization of query types for RB strategies follows
from machine learning literature. The number of training
examples required to learn an accurate model of a concept
increases exponentially with the number of features in the
state space representation. Thus, machine learning systems
typically employ feature extraction as a preprocessing step
before training ensues, to increase sample efficiency. Addi-
tionally, in AL systems, some passive learning is often done
first to obtain a small unbiased training sample for building
initial models of the concepts. Then LQs are made on the
remaining unlabeled instances, as selected by learner.

Based on these standard practices, we designed RB prior-
itization as follows: (1) request for task features using HFS,
(2) initial demonstrations given by teacher, (3) label requests
made by learner for refinement of initial symbol models. We
investigate the following rule-based strategies:

1. ARB: HFS + passive (HFS+P) — Imposes constraint that
features must first be selected by teacher, then passive
learning ensues until termination of episode

2. ARB: HFS + active (HFS+A) — Imposes constraint that
features must first be selected by teacher, then active
learning ensues until termination of episode

3. ARB: HFS + P + A (AI/CD) — Imposes constraint that
features must first be selected by teacher, then a minimal
set of demonstrations provided by teacher, then refine-
ment of groundings is done through active learning. This
strategy also tries to maintain a uniform class distribution.

Experimental: Decision-Theoretic Arbitration
RB strategies explored provide the agent with a seemingly

intuitive set of heuristics for selecting a query type at each

turn. However, they do not encapsulate any notion of agent
goals. They do not allow the agent to directly compare
queries of different types and reason about which most
enables learning progress. And they do not allow the agent
to reason about whether to even make a query. Thus we
formulate a decision-theoretic (DT) arbitration framework

which explicitly models the agent’s learning state, allows di-

rect comparison of diverse query actions, and encodes agent

learning goals within a multiattribute objective function.
Let D be the set of training instances acquired by the agent,
Y the set of task symbol classifiers, O the set of scene objects,
and Fy be set of features used by symbol classifier y. Learning
state s is represented as the current estimate of the joint
probability distribution between objects and symbols, where
each element p,y is the posterior probability that object o is
an example of symbol y. The current state s is dependent on
both D and F; for each y € Y. The robotic agent’s goal is to

sufficiently ground and generalize its model of each y € Y.
With respect to the assessment of learning progress, it is

not feasible to assume the agent has access to a labeled test
set that it can use to evaluate its current performance. Thus
the agent needs a different way to both evaluate a candidate
query action a and recognize when no query will help it to
make it progress towards its learning goals. The expected
utility of each candidate a € A is computed as a linear
combination of two goals: (1) maximization of each symbol
classifier’s ability to discriminate aptly, and (2) minimization
of selection bias in the training sample acquired.

1. Average Classifier Discriminability (ACD) — Ascertains
ability of symbol classifiers to differentiate between most
probable and least probable examples of their class. It
employs the function:

1

ACD(s) = 7]

Z [2s(Y|omax) — Ps(Y|Omin)]

yeyY
where p; represents the probabilistic prediction for y in
the current state s, and 0,4, and o,,;, represent the objects
in the scene predicted to be the most and least probable
examples of symbol y, respectively. ACD value should
increase over the course of the learning episode, indicating
that the symbol classifiers are improving in their ability
to differentiate between examples in O.

2. Class Distribution Uniformity (CDU) — Assesses selection
bias in the training sample, resulting from the agent



collecting a sample unrepresentative of the underlying
distribution. We assume a uniform distribution of symbol
classes should be acquired by the agent so as not to bias
it towards any task-relevant object, however the formula
can be adapted for a nonuniform distribution as well. CDU
employs the following function:

D, .
CDU(S) _ ||DYmmsS|
Y

max;s|

where Dy, . ¢ and Dy .  are each subsets of the training
sample. They represent the subsets of positive examples
for yar and ypin, the symbols most and least represented
in the training sample at state s. This value is maximal
when the class distribution is uniform.

Combining the above metrics, utility of s is computed as:
U (s) = wiACD(s) +waCDU (s) 2)

To select an optimal query action a*, the agent computes
the expected utility (EU) of taking each a € A, the set of
candidate actions, and takes an argmax. EU is computed as

EU(a|D,0,Y,F) =Y U(s')*P(s'|a,D,0,Y,F)  (3)
S,

where s’ is a candidate next state resulting from taking a,
dependent upon teacher feedback. Importantly, the agent’s
decision rule is to only take action a* if EU (a*) > U (s). Else,
the agent makes no query at turn ¢. Intuitively, this suggests
a query should only be made if is expected to improve the
state of the learning, i.e. engender learning progress.

To assess a DQ for symbol J, the agent simulates the set
of plausible responses by the teacher. Given the agent has
requested a demonstration of §, it assumes the teacher will
draw the demonstration from O. Thus Vo € O, it simulates
a resulting state s’ by adding labeled instance < 0,§ > to
D and computing the U(s") according to Equation 2. We
approximate the probability of s’ occurring (i.e. the teacher
providing o as a positive example of §) as prob(ol¥).

To assess a LQ for object 4, the agent again simulates the
set of plausible responses by the teacher. Given the agent has
requested a label for 9, it assumes the teacher will provide it a
label from Y. Thus Vy € Y, it simulates a resulting state s" by
adding labeled instance < 6,y > to D and computes the U (s')
according to Equation 2. We approximate the probability of
state s occurring (i.e. the teacher providing y as a label for
0) as prob(y|0).

To assess an FSQ, it is too computationally expensive
to simulate all feature subsets the teacher could possibly
provide, since there are 2IF| candidate subsets. Thus, to
substantially prune the search space, the agent can use feature
subsets outputted by the computational feature selectors
of each y € Y. These subsets are the best approximates
it currently has for informative features, and prior work
has shown that given task features are intuitive, HFS is
at least as good as computational feature selection [17].
Since we assume task features are semantically interpretable
by a human, the agent can expect the feature subset it
would receive to be at least as good as those outputted by
computational methods. Thus, the agent simulates the set of
plausible responses by the teacher with the computational

(a) Pasta
(state:in box)

(b) Pasta
(state:in pot)

(c) Pasta
(state:in bowl)

(d) Banana
(state:bunch)

(f) Banana
(state:single) (state:sliced)

(e) Banana

Fig. 2: Illustration of object state changes for main dish and fruit
objects classes in prepare-lunch task.

feature subsets generated. Utility for an FSQ is computed as
follows: Vy €Y, it simulates a resulting state s’ by changing
F, to F,. for each y € Y, where F,. is the computational
feature subset computed for symbol model y. Thus it retrains
all symbol classifiers, given D, but with F . as the underlying
representation. We approximate the probability of state s
occurring (i.e. the teacher providing feature subset Fy ) as
1/|Y|, a uniform distribution over the computational feature
subsets generated by the symbol models.

V. EVALUATION

Given the research questions being explored, we evaluated
three hypotheses: (1) arbitration strategies will outperform
baseline strategies since they acquire both informative fea-
tures and training instances from humans domain experts,
(2) prioritizing the acquisition of feature data over instances
will result in more efficient learning, and (3) DT arbitra-
tion will better adapt within dynamic environments since it
additionally reasons about when to make queries.

To evaluate all strategies, we conducted an experiment
with two different tasks: (1) a pack-luncbox task and (2)
a prepare-lunch task. Each task uses the same four object
symbols: main dish, snack, fruit, and beverage. However, the
task datasets have different properties and were created from
different image datasets. Each s € S is evaluated using two
metrics: learning accuracy (how well agent identifies unseen
examples of each symbol) and sample efficiency (number of
questions needed to sufficiently ground all symbols).

A. Data Collection

The pack-lunchbox task assumes all groundings remain
static, which means the way the object is embodied in the
world does not change. The main dishes (instant noodles) are
always packaged, the beverages (water and soda cans) remain
bottled or canned, the fruit (apples, oranges, peaches, pears)
is whole and ripe, and the snacks (food bags, e.g. chips)
remain closed. Data for this task was collected from the
University of Washington RGB-Dataset of common house-
hold objects [22]. The image dataset includes over 200,000
object images in total, encompassing over 300 objects or-
ganized into 51 categories (e.g. soda can), with multiple
object instances per category (e.g. pepsi can, mountain dew
can). For each object instance, there are several hundred



images, captured from three camera viewpoints; a small
subset of object instances are additionally captured under
different lighting conditions. For the pack-lunchbox task,
we only consider object instances relevant to the symbols
being grounded. Given images of object instances from the
UW dataset, we generated five disjoint training datasets for
the pack-lunchbox task and one hold-out test dataset, each
training dataset consisting of n = 3200 images and the test
dataset consisting of n = 800 images. All datasets contain
images of the same set of task-relevant object instances. For
each dataset, stratified random sampling without replacement
was used to generate a uniform class distribution.

In the prepare-lunch task, some objects change state,
presumably as lunch is being prepared. The motivation for
this is even within the same environment, groundings for
a particular symbol can change over time (e.g. an apple
transitioning from whole to sliced, or pasta going from being
packaged in a box to being served in a bowl). This property
of dynamically changing groundings is an important part of
our problem domain and is thus explored in the second task.
Towards that end, we varied the states of two objects symbols
(main dish and fruit) and allowed the other two to remain
static (beverages and snacks). Figure 2 illustrates changes
that could reasonably occur as the task is being performed.

Data collection was done using a Kinect RGB-D sensor
on our mobile manipulator robot platform. The sensor is
mounted on the head of the robot and was angled to
look down at the robot’s workspace for taking color and
depth images of each object. As data was being collected,
the orientation of each object instance was systematically
varied, and each object instance was also moved to various
positions around the workspace to create different lighting
angles. A total of approximately 200 images were taken,
four object categories which decompose into 14 different
object instances: 3 boxes of pasta, 4 brands of chips, 3 types
of fruit, and 4 beverages. From the image dataset created,
train and test datasets for the task were generated so as to
ensure a representative sample of the object states collected
in the data. Given that we aimed for a uniform distribution
of classes and the same underlying distribution of object
instances in each dataset, not all images were used. The
training dataset for the prepare-lunch task contained n = 80
images and the test dataset contained n = 40 images. For
this task, since the number of images of transformed objects
taken from our robot was several orders of magnitude smaller
than the UW dataset, we seeded each training dataset with the
same set of images but added Gaussian noise to the extracted
features; we also added Gaussian noise to simulated features
for both task datasets. We again generated five training
datasets for the second task. For both tasks, the training and
test datasets generated are disjoint.

B. Sensory Input

Since our work is intended for a robotic agent, we col-
lected real-world vision data from a robot’s camera!, as well
as simulated multi-modal feature information to represent

lobject bounding box position, orientation on table, color, size dimen-
sions, area, volume, aspect ratio, visual texture, compactness of object’s
point cloud, and density of point cloud contour
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Fig. 3: (a) Accuracy of all strategies for pack-lunchbox task, as a
function of number of questions asked. Baseline approaches use
computational feature selection; experimental strategies request

human-selected features. (b) Comparison of accuracy once
learning has stabilized for best strategies (after 20 questions).

features that would be extracted from other robot sensorsZ,

resulting in 90 low level features in total. Thus for each
object in the scene, F is computed based upon perceptual
information taken from multiple robot sensors.

C. Experimental Design

In designing experiments, the agent should be provided
with perceptual input that simulates a robotics domain. Thus,
we had two goals: (1) since a robot’s perceptual system
typically outputs one feature vector per cluster in the scene,
the system is designed to randomly sample one image per
scene object from the specified task dataset each time a
new set of observations is generated and (2) since robots
typically operate in dynamically changing environments, the
system samples a new set of observations every r turns
in the learning episode, where r represents the rate of
environmental change. For the task where groundings remain
static, environmental changes include only viewpoint and/or
lighting. Groundings changing over time (Figure 2) means
environmental changes may also include physical object state
change. At each turn 7, O contains only one observation

20bject’s location relative to interest points in the environment (e.g.
counter top, stove, refrigerator, pantry), the object's location relative to the
robot base, absolute location of robot’s base in the environment, location of
the robot‘s base with respect to the counter top, the robot's joint positions
for each arm, pose of the robot’s hands, robot's hand states (open vs
closed), weight of the object, and max/min/average volume of noise in the
environment over duration of learning episode.
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Fig. 4: Accuracy of all strategies for prepare-lunch task, as a
function of number of questions asked. Baseline approaches use
computational feature selection; experimental strategies request

human-selected features. Performance under both (a) rapid change
(every turn) and (b) gradual change (every 20 turns).

(image) of each object in the scene. To simulate environ-
mental change, the perceptual system generates a new set
of observations. Else, it outputs the set of observations from
t —1. Given O, the agent decides whether to query, then
updates and evaluates all symbol models following feedback
given. The teacher for all experiments was one of the authors.

VI. RESULTS

We compare learning accuracy resulting from employing
each of the different questioning strategies. To test each
strategy s € S, learning accuracy is computed using:

Y [1-8(hi(x).y)] )

xeD;

:\'—‘

=it

»\H

where E is the expected value of the learning accuracy
using s on training dataset D; with respect to distribution
D, hi(x) is the hypothesis of the learner using s trained on
D; then tested on instance x in the test dataset, y is the
ground truth label for x, and the quantity 8(h(x),y) is 1
if h{(x) #y and O otherwise. Also, n is the number of test
instances in each task test dataset and k is the number of
task training datasets used. For both tasks, k = 5; n = 800
for pack-lunchbox task and n =40 for prepare-lunch task.
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Fig. 5: Accuracy for prepare-lunch task when learning stabilized
for best questioning strategy (after 50 questions), as denoted by
the vertical red bars on learning curves. Performance under (a)

rapid change (every turn) and (b) gradual change (every 20 turns)

A. Learning Static Groundings

Figures 3 and 4 show learning accuracy for each s € §
in the pack-lunchbox and prepare-lunch tasks respectively.
Each s was given a 40 question budget in the former and
60 question budget in the latter since it is a harder learning
problem. We use the Mann-Whitney U-test to compute sta-
tistical significance comparisons for each pair of strategies.

Our first hypothesis was that strategies gathering both
feature and instance information will outperform baselines
acquiring only instances. Our resulting learning curves sup-
port this hypothesis for all experimental strategies (i.e. rule-
based and decision-theoretic), with respect to both learning
accuracy and number of questions necessary for learning per-
formance to stabilize. For the pack-lunchbox task (Figure 3),
learning performance for all experimental strategies begins to
stabilize after approximately 20 questions have been asked,
whereas performance does not stabilize for the baseline
strategies until approximately 40 questions have been asked.
And the baselines still require additional questions to reach
the performance of the experimental strategies. Thus on the
easier learning task, the experimental strategies are able to
sufficiently learn the task-relevant concepts with less than
half the number of questions. For the prepare-lunch task
(Figure 4), all arbitration strategies significantly outperform
both baseline strategies throughout the entire duration of the



learning episodes tested, the random strategy outperforms the
baselines for a little more than half of the episode, and the
rate of increase for the baseline strategies is very gradual.
Thus we do not expect learning performance to stabilize for
any of the baseline learners on the more difficult learning
task until well after any of the learners using an arbitration
strategy conclude their episodes.

The second hypothesis being tested was prioritization of
a feature subset request over instance acquisition, imposed
by experimental strategies, would result in more efficient
learning, as compared to a random arbitrator, which also
combines all query types but with no apparent strategy.
We found that on average, the random strategy seems to
perform on par with the two baseline strategies incor-
porating only one query type, in the pack-luncbox task,
which means it takes much longer to learn the concepts
than experimental arbitration strategies for this task. This
supports our hypothesis. However, random is able to perform
comparably with the experimental arbitration strategies after
approximately 30 questions on average, in the prepare-lunch
task. Thus all arbitration strategies sufficiently learn the task
after approximately 50 questions. This fails to support our
hypothesis. To understand why, we examined the episodes
more closely. We found that in episodes where the random
learner requests human features, learning performance spikes
and quickly becomes comparable to that of the experimental
strategies thereafter. In episodes where an FSQ is not made,
this essentially reduces to the case of randomly selecting
between only DQs and LQs; in those cases, we observed
learning performance comparable to baseline strategies for
the duration of the episode. And since the pack-lunchbox
task has over four times the number of objects as the prepare-
lunch task (55 vs 12), and thus considers approximately four
times the number of candidate queries per turn, R takes
substantially longer to randomly select an FSQ in pack-
lunchbox than in prepare-lunch. This explains the significant
shift in the performance of R in the prepare-lunch task (Fig
4) but not in the pack-luncbox task (Fig 3a); it takes much
longer to happen in the latter case. The overall implication
is the acquisition of informative features has a significant
impact on learning performance; thus if the teacher can
provide them, a feature subset request should be prioritized.

B. Learning Groundings that Change over Time

Our final hypothesis was DT arbitration would better adapt
within dynamic environments because it additionally reasons
about when to make queries. We aimed to understand the im-
pact of the rate of environmental change on efficacy of arbi-
tration strategy employed. For this analysis, we focus on the
prepare-lunch task since we found that rate of environmental
change did not noticeably impact learning performance for
the pack-lunchbox task, where groundings remain static. In
the prepare-lunch task however, the environment must change
for the agent to encounter all possible symbol groundings,
since the groundings themselves change over time. Thus, we
use prepare-lunch for exploration of dynamic groundings.

Figures 4a and 4b compare learning performance per
number of questions asked in prepare-lunch, given both rapid
and gradual environmental change. When rapid change is
occurring (every turn), performance Vs € S stabilizes after

approximately 50 questions. As shown in Figure 5a, all RB
strategies (magenta) and the DT strategy (black) perform
comparably. However, under gradually changing conditions
(every 20 turns) 3, DT clearly and significantly outperforms
all other strategies for most of the learning episode. Figure 5b
highlights this by comparing performance of all s € S at 50
questions, where DT begins stabilizing. Here, all arbitration
strategies statistically significantly outperform both base-
lines. Moreover, DT statistically significantly outperforms all
other strategies. In all cases, p < .05.

To better understand why DT dominates in this setting,
we examine Figure 6, which visually depicts one learning
episode for the DT strategy under both rapid and gradual
environmental change. Accuracy is plotted as a function
of time steps elapsed. Gray vertical bars represent change
occurring in the environment. The dots indicate time steps
where a query is made. The green vertical bar indicates
when all other strategies complete their episode (after 60
time steps) since all other s € § make a query at every
time step until their questioning budget is depleted. The
red vertical bar indicates when the DT agent depletes its
questioning budget and completes its episode. Comparing
the graphs, under gradual change, the DT agent makes less
frequent requests and distributes its questions over 374 time
steps. Whereas under rapid change, it takes only 112 time
steps to complete its episode and still achieves comparable
performance. Even more compelling, under both conditions,
its queries are generally made soon after environmental
change occurs. Thus illustrating its ability to be adaptive
and responsive to environmental change and successfully
acquire a representative training sample, independent of the
rate of change. By comparison, since all other strategies
make a query at every time step, they end up acquiring
many redundant training examples when the environment
is changing slowly. This leads to training samples that
inadequately represent the diversity (variance) in each task-
relevant class and classifiers that perform sub-optimally on
a representative test set. In short, the DT agent allots its
questioning budget more wisely, so it is largely unaffected by
the slowly changing conditions. In a long-term setting, this
is especially compelling because the agent can effectively
reason about how to refine its models as a function of change
in the environment and does not have to rely on the user to
track the state of its knowledge over extended durations or
decipher when and how to help the agent update its models.

VII. DISCUSSION

From our experimental investigations, two key insights
emerge: (1) enabling the learning agent to ask questions that
elicit diverse types of input (i.e. both informative features
and instances) and appropriately prioritize the query types
consistently leads to more efficient learning of the task-
relevant concepts and (2) given a dynamic environment and
constrained questioning budget (typical in human settings),
the DT strategy is able to make the best use of the limited
number of questions by deciphering both when to make a
query and what query to make.

The DT strategy is not without its limitations however.
DQs are costly to a human teacher because they often

3 Accompanying video at https://www.kaleshabullard.com/research/
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Fig. 6: Learning Performance as of Number of Time Steps in Learning Episode for Decision-Theoretic Strategy

require more effort and time. The DT strategy used an
average of 32% and 38% of its questioning budget making
demo requests for the pack-lunchbox and prepare-lunch tasks
respectively, in the rapidly changing environment, and an
average of 52% for the prepare-lunch task in the gradually
changing environment. This is substantially more demo re-
quests than the rule-based strategies, which are fixed at 8
DQs, independent of the task, or on average 20% and 13%
of the budget for the pack-lunchbox and prepare-lunch tasks
respectively. In future work, we are interested in exploring
interaction-related attributes in the DT strategy’s objective
function, so it reasons about an optimal action, considering
both learning progress and social aspects of the interaction.

VIII. CONCLUSION

This work explored the use of rule-based and decision-
theoretic strategies for arbitrating between AL queries of
different types, to enable a learning agent to acquire diverse
types of information (i.e. informative features and training
instances) from a human teacher. We conducted experi-
ments on two different tasks under different environmental
conditions, comparing 4 experimental arbitration strategies
against baselines of more traditional passive and active
learning, as well as random query selection. Overall, the
questioning strategies that enabled the learning agent to
(1) extract diverse types of information and (2) prioritize
acquiring feature information early in the learning episode,
more efficiently learned to ground the task-relevant concepts.
Moreover, given a dynamically changing environment and
constrained questioning budget, the DT strategy was the
only strategy able to acquire a representative training sample,
independent of the rate of environmental change, because it
reasons about both what query to make and when to query.
These findings show that strategic arbitration eliciting diverse
types of information from the teacher is able to consistently
maximize learning performance when grounding concepts.
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