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Abstract— Keyframe-based Learning from Demonstration
has been shown to be an effective method for allowing end-
users to teach robots skills. We propose a method for using
multiple keyframe demonstrations to learn skills as sequences
of positional constraints (c-keyframes) which can be planned
between for skill execution. We also introduce an interactive
GUI which can be used for displaying the learned c-keyframes
to the teacher, for altering aspects of the skill after it has
been taught, or for specifying a skill directly without providing
kinesthetic demonstrations. We compare 3 methods of teaching
c-keyframe skills: kinesthetic teaching, GUI teaching, and
kinesthetic teaching followed by GUI editing of the learned
skill (K-GUI teaching). Based on user evaluation, the K-GUI
method of teaching is found to be the most preferred, and
the GUI to be the least preferred. Kinesthetic teaching is also
shown to result in more robust constraints than GUI teaching,
and several use cases of K-GUI teaching are discussed to show
how the GUI can be used to improve the results of kinesthetic
teaching.

I. INTRODUCTION

The goal of Learning from Demonstration (LfD) research
is to enable people with no specialized robotics knowledge
to teach robots new skills [1]. Complex humanoid robots are
capable of a broad range of skills that could assist humans in
both industrial and domestic settings, yet programming these
skills requires specialized knowledge and is time consuming.
LfD strives to enable robots to learn skills from human
demonstrations, and for the learned skills to be usable in
environments and contexts not shown during teaching.

A common means of providing demonstrations is kines-
thetic teaching, in which the teacher physically guides the
robot through a skill. These physical demonstrations can
be used to show the skill as a full trajectory, a series of
positions (known as keyframes) from the full motion, or
a hybrid of both [2]. Several such demonstrations can be
given, so that the robot can learn a better model of the skill.
Multiple demonstrations can result in a better skill model
due to being robust to bad demonstrations and by enabling
the learning of sets of constraints that describe the skill as
generally as possible, such as the correct reference frames for
the keyframe [3]. Keyframe demonstrations have been shown
to be more comfortable for people when giving multiple
demonstrations [2]. Alexandrova et al. have also shown that
keyframes from a single demonstrations can be visualized
in an interactive GUI to allow for users to directly edit the
keyframes of the model [4].
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(a) Kinesthetic Teaching (b) GUI Teaching

Fig. 1: Example of teaching to place a cup on a platter in
the two teaching modes with our robot platform, Curi.

Though splining between keyframes can be used for
executing the skill, this approach is not robust to obstruc-
tions in the environment not seen during teaching. Though
Alexandrova et al. have shown that a visual representation of
keyframes can clearly communicate the robot’s model of a
taught skill, and so allow the teacher to make any needed
corrections after kinesthetic teaching, their representation
only uses the end effector poses from a single keyframe
demonstration and so suffers from a lack of robustness to
new obstacles [4]. In this work we propose the constrained-
keyframes (c-keyframes) skill representation, which can be
executed by using motion planning and so allow the skill
to be executed despite obstructions in the environment. We
describe how c-keyframe skill models can be learned from
multiple demonstrations and how they can visualized in an
interactive GUI for editing.

We also compare three teaching methods for c-keyframe
skills: kinesthetic teaching, GUI teaching, and K-GUI teach-
ing. This is useful for evaluating which approach is best and
whether a GUI without kinesthetic interaction is sufficient
for LfD. The comparison is based on a study with 10
novice teachers that used each teaching type to teach a skill.
Timing, survey results, and testing of the taught models in
novel virtual environments were used to evaluate the speed,
difficulty, teacher preference, and teacher proficiency for
each method. Though the results do not show one method to
be clearly better, they show users both prefer and are in some
cases more effective at specifying skill constraints using K-
GUI teaching, and that though they are able to use the GUI
for teaching skills they prefer and are better at using the
more intuitive kinesthetic teaching approach.
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II. RELATED WORK

There has been extensive research done in LfD on learning
skill policies as well as approaches for recreating smooth
trajectories from either one or multiple demonstrations. A
topic that has been researched less extensively is the use of
LfD for learning skills as sets of constraints that can be used
with symbolic planning and motion planning. Constraint
extraction has been done for finding appropriate reference
frames as well as relevant objects for sequences of skill
primitives that are learned from segmenting multiple demon-
strations [3]. Demonstrations have also been used to guide
motion planning by speeding up constrained planning based
on experience graphs [5] and by learning time-dependent
task constraints from demonstrations which can be used
by a sampling-based planner to match the demonstrations
while avoiding novel obstacles [6]. Demonstrations have also
been used to learn appropriate constraints for task-level skill
models [7], and have been used for learning new task-level
concepts that could be used as goal constraints [8].

LfD research also encompasses the question of how users
can best provide demonstrations of skills to robots. In [9],
user satisfaction with a dialog-based interface for providing
demonstrations is evaluated. In [2], a similar interface is used
and keyframe demonstrations are proposed and evaluated as
an alternative to trajectory demonstrations. Users did not
prefer one method significantly over the other, except that
keyframes were preferred to trajectories for teaching with
multiple demonstrations. An interactive GUI for editing the
positions and reference frames of keyframes recorded from
a single demonstration is suggested and shown to be helpful
for users in [4]. This GUI is also evaluated in the context of
fixing the aspects of demonstrations through a ”crowd” of
users using a cloud-based web interface[10].

Though several approaches have been proposed for us-
ing trajectory demonstrations to guide motion planning, no
work has yet proposed an approach for learning a discrete
sequence of constraints that describe the range of allowed
intermediate states for skills that can be taught with keyframe
demonstrations. A discrete set of constraints has the benefit
of being possible to fine tune without further demonstrations.
Learning a skill’s constraints allows for the skill to be exe-
cuted independently of how it was demonstrated by planning
to satisfy the constraints, which can naturally adapt to new
environments. In this work we propose the c-keyframes skill
representation, which is composed of sequential constraints
on end effector positions and can be learned from multiple
kinesthetic keyframe demonstrations. Additionally, we show
how skills can both be edited and directly specified in
an interactive GUI similar to that of [4], but that allows
for editing skill constraints rather than end effector poses.
Though [4] used survey and usage results to show the GUI
is useful as a step following kinesthetic teaching, it only
discussed kinesthetic teaching followed by GUI edting and
did not compare different teaching methods. Significantly,
our work indicates that using the GUI alone is not as effective
as kinesthetic or hybrid teaching.

Fig. 2: Visualization of a single c-keyframe and 3 possible
end effector poses defined by it. The yellow and green arrows
define the end effector orientation.

III. SKILL REPRESENTATION

The c-keyframe skill representation follows naturally from
keyframe demonstrations. Keyframes for end effectors only
encode a single pose, whereas c-keyframes have a space of
possible poses for the end effector defined with a box-shaped
positional constraint and a single associated orientation. The
benefit of using positional constraints is that they can be
easily learned from multiple kinesthetic demonstrations, can
be intuitively visualized in an interactive GUI for editing or
directly specifying the skill, and can be directly used with
the OMPL motion planning library for skill execution [11].
Though motion planning could be used with less rigid con-
straints such as guassian distributions, such constraints are
much harder to visualize and edit in a GUI and are therefore
not used. Because they are made up of a box-shaped position
constraint and a single orientation, c-keyframes can be easily
visualized by a combination of a box and two arrows as
shown in Figure 2. We use rViz and ROS markers to create
this visualization [12].

Fig. 3: Image showing a set of clustered keyframes. The
arrows are the PCA components, and the minimum volume
enclosing box is shown.
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IV. SKILL TEACHING METHODS

A. Kinesthetic

A set of keyframe demonstrations for the same skill, as
in [2], can be used to find its c-keyframe representation.
To do so, the keyframes from all the demonstrations are
first clustered to find the mean of each constraint, and
then the keyframes in each cluster are used to find their
spacial covariance. The means define the center of each box
constraint, and the eigenvectors of the covariance matrix
define their orientation. The scale of the box along each
axis is set to be large enough to reach the farthest keyframe
along that axis. An end effector orientation is found for each
cluster by averaging the orientation of all the keyframes in
it. The combination of the box position constraint and end
effector orientation form a c-keyframe from each cluster, and
the order of the c-keyframes is set based on the average
keyframe sequence number of the keyframes within each
cluster. We used k-means clustering with k being set to the
rounded average of the number of keyframes from all the
demonstrations, followed by Principal Component Analysis
to find the covariances of each constraint. Gaussian Mixture
Model analysis could also have been used as in[2] for finding
both the mean and covariances of all constraints, but was not
due to ease of implementation and the consideration that this
approach works sufficiently well for this research.

B. GUI

Constrained keyframes can also be directly specified
through a GUI, avoiding the need for any demonstrations.
As shown in Figure 4, the GUI is implemented using a Java-
based GUI for text input and buttons as well as interactive
markers in rViz which display the keyframes and allow
them to be moved and rotated. The c-keyframes can be
selected for editing by directly clicking on the box of the
keyframe in rViz. The buttons on the Java GUI include
the functions for keyframe creation, precise positioning and
sizing, setting the hand to close or open, and attempting to
execute the skill specified by the current set of c-keyframes.
Motion planning is done using the OMPL motion planning
framework, which supports setting goals based on positional
constraints specified as boxes. Reference frames are not
specified, since our focus is on specifying constraints, though
that aspect could be included in the GUI as in [4].

C. K-GUI

Based on the two previous methods for creating and
editing c-keyframes skills, it is straightforward to first teach
a model of a skill with kinesthetic demonstrations and then
edit it in the GUI. Unlike in the GUI-only approach, the
GUI in this teaching method is used to correct any flawed
aspects of the skill learned from demonstrations. The GUI
can also be used to expand c-keyframes to cover as much
area as possible, and therefore teach the skill as robustly
as possible. In every teaching scenario, the objects involved
in the kinesthetic teaching tasks should exist in the rViz
environment as well.

Fig. 4: Interactive GUI for directly specifying constraints. A
Java based GUI allows the user to create new keyframes and
their position and size. It also allows to specify whether the
robot’s hand should be closed and to preview the skill with
simulated execution. Interactive markers in rViz are used to
be able to edit the position and rotation of keyframes.

V. USER STUDY

We conducted a user study with 10 participants, who were
undergraduate and graduate students with no experience in
robotics at the Georgia Institute of Technology. The purpose
of the study was to evaluate which methods of teaching
novice teachers prefer and are good at for teaching c-
keyframe skills.

A. Study Protocol

Each study participant was tasked with teaching a sin-
gle skill using each of the teaching methods. Three skills
appropriate for the c-keyframe representation were chosen:
placing a cup anywhere on a platter, pouring liquid from a
cup into a bowl, and closing the lid of a box. Before teaching
with each method, the participants were guided through a
practice task of placing a cup on the edge of the table. It
was explicitly explained that in kinesthetic mode they should
give a range of demonstrations to show different places the
cup can be put down along the edge of the table, and that in
the GUI mode the keyframe for placing down the cup should
be made large enough to cover the entire edge of the table.
The order of teaching methods was counterbalanced but the
order of which skills were taught was kept the same for all

3610



Fig. 5: Measured speed of each teaching mode.

participants,, since the intention was to compare the teaching
methods and it was not expected that the order of skills
would affect that. A time limit of 10 minutes was placed
on each teaching method, but otherwise it was left up to the
participant to decide how many keyframes or demonstrations
were appropriate while teaching. Participants were not told
how the taught skills would be evaluated.

B. Metrics

Metrics were collected for evaluating the speed, difficulty,
user preference, and constraint robustness for each teaching
method. To evaluate teaching speed, users were timed during
each teaching interval. Perceived difficulty and preference
were evaluated using a survey. Participants were also asked to
respond to the free-form question “Based on your experience,
comment on the pros and cons of each mode of teaching
for teaching skill constraints.” The robustness of the learned
skills was evaluated based on motion planning success in
multiple virtual environments with different collision objects
.

VI. RESULTS

A. Speed

The measured times are shown in Figure 5. Participants
were allowed to at most use 10 minutes of teaching time
for each skill, and were told to take about a minute to
finish teaching when they reached 9 minutes of teaching.
Counterbalancing of the order of the teaching methods, and
so which skills were taught with each method, was done
in order to account for variable difficulty of teaching skills.
A clear and predictable result is that K-GUI teaching takes
longer than kinesthetic teaching by itself. On average, the
GUI teaching took about the same amount of time to use
as kinesthetic teaching. Kinesthetic teaching times varied
due to the users choosing to provide different numbers of
demonstrations, and GUI teaching times varied due to users
choosing to spend different amount of time fine tuning the
taught skill.

Fig. 6: Difficulty evaluations from survey.

B. Difficulty

The collected difficulty evaluations are presented in Figure
6. On average the GUI mode of teaching was evaluated as
being the most difficult, and kinesthetic the easiest. Though
this matches with our expectation, due to the low sample
size the result is not statistically significant. However, several
free form comments also indicate that kinesthetic teaching
was easiest: “Kinesthetic seems more intuitive”,“kinesthetic
helps to teach to me as the user exactly what is required for
success (this is hard to simulate on the computer)” “Easy to
learn,Intuitive.” The comments concerning the GUI reflected
greater difficulty: “Harder to use software”, “little bit hard
using GUI to adjust the position or camera”, “Just GUI gives
us more freedom, but it might not be that intuitive.”, “For
just GUI, it could be accurate but not realistic or hard to
teach compared to kinesthetic with GUI.” Empirically, users
appeared to have most difficulty in the GUI with moving the
camera and the keyframes in 3D space.

C. Preference

Preference was measured through the survey with the
question “If you had to teach another task to the robot, which
mode of teaching would you choose.” The answers to this
question are as follows: 0 chose GUI, 3 chose kinesthetic,
and 7 chose K-GUI. Thus, K-GUI is chosen significantly
more often as most preferred (χ2, p < 0.01 compared
to random chance). The GUI mode of teaching was the
least preferred mode, though users commented that the GUI
had the benefit of allowing them to be more accurate than
kinesthetic teaching. Despite the K-GUI mode being on
average slower and more difficult to use than kinesthetic
teaching, it was selected as the most preferred approach. The
preference for the K-GUI model was explained in several
participant comments: “I prefer kinesthetic [combined with
GUI] because it is easy to teach at first and then one could
amend actions that seems problematic through GUI”, “work-
ing in the GUI allows to tweak motions from kinesthetic...”
These results are in line with what has been shown in [4],
where users considered a GUI for editing the keyframes of
a single keyframe demonstration to be useful for visualizing
exactly what has been learned and being able to edit it.
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(a) GUI platter model (b) Kin+GUI Box Model

Fig. 7: Examples of model evaluation.

D. Constraint Robustness

The long term goal of this research is to establish how
robust and correct skill models can be taught, and so the
constraint robustness of skill models was also evaluated. This
was done by attempting to plan with each model in a total
of 15 simulated test environments with different collision
objects added to the scene, as in Figure 7. The physics of
grasping and the box’s lid were not simulated, so the goal
of planning was only to move the end effector based on the
keyframe constraints. It is expected that the success rate of
taught skills at correctly executing the action will correlate
with this measure. The result of this evaluation process are
shown in Table I. The low success rate (at best 92/150) can
be explained by the fact that teachers were not shown the test
environments in which each skill would be tested, but rather
taught the skills in an ideal environment with instructions to
teach the most general constraints possible.

The GUI method of teaching has the lowest average
number of successful planning attempts and the lowest stan-
dard deviation for this result of the three, despite allowing
for direct sizing of the keyframes. This may be because
participants often did not elect to resize the keyframes, which
resulted in planning not being possible when obstructed when
collision objects are present. As can be seen on Table II, the
GUI results are least successful for the pour task; this may
be because resizing the constraints was not as straighforward
as the platter task.

Participant Mode Order GUI Kinesthetic K-GUI
Participant 1 G-KG-K 7/15 13/15 12/15
Participant 2 G-KG-K 9/15 13/15 9/15
Participant 3 K-G-KG 5/15 7/15 0/15
Participant 4 KG-K-G 9/15 6/15 14/15
Participant 5 G-kG-K 7/15 4/15 13/15
Participant 6 KG-G-K 6/15 11/15 14/15
Participant 7 K-KG-G 5/15 10/15 6/15
Participant 8 G-K-KG 11/15 7/15 4/15
Participant 9 K-G-KG 0/15 10/15 5/15
Participant 10 KG-G-K 0/15 11/15 12/15
Average NA 5.4 9 8.9
Standard Deviation NA 3.3 3.7 5.1
Total NA 59/150 92/150 89/150

TABLE I: Constraint robustness results from simulated tests
of skills in multiple environments. Skills were always taught
in the order platter-pour-box.

Skill Type GUI Kinesthetic K-GUI
Platter 56.6% 60.9% 88.8%
Pour 18.3% 37.7% 60.0%
Close Box Lid 73.3% 80.0% 36.6%

TABLE II: Constraint robustness results by skill type.

Kinesthetic teaching has a slightly higher average numbers
of successful planning results compared to K-GUI. Addi-
tionally, and not shown on the table, on average the skill
models from K-GUI teaching prior to GUI edits have more
planning successes than after editing has been done. The
low sample size and naturally varying teacher proficiency
makes it difficult to conclude whether kinesthetic teaching
is therefore better; notably, K-GUI has higher standard
deviation in both measures due to several particularly bad
skill models from participants 3, 8, and 9 for the box skill.
From Table II, we observe that these bad skill models result
in K-GUI having a much lower success percentage for the
box skill despite it being higher for the other two skills. Due
to the small sample size of the study and natural variation in
user performance we cannot conclude whether K-GUI has
no advantage over kinesthetic teaching or if the bad skill
models are outliers and K-GUI otherwise presents a benefit
over kinesthetic teaching. However, example use cases from
the study support the idea that the GUI is either not used to
alter the kinesthetic model or is used to improve it.

VII. EXAMPLE CASE STUDIES

Several use cases can be used to explain why the GUI
had the lowest success rate for constrained planning. Figure
7a presents an example of the platter skill in which users
made the placement keyframes as large as possible by using
the GUI’s resizing feature to correctly specify that the cup
can be placed anywhere on the platter. However, participants
did not consistently use the GUI’s resizing capability as
in that example despite being explicitly guided to resize a
keyframe for the practice task. Figure 8 illustrates several
models where the users either did not resize the keyframes
as much as possible or did not resize them at all from the
default size. A possible reason for this is that although it was
stated that the users should attempt to teach the robot how
to do the skill as generally as possible, some users focused
more on adjusting the keyframes so planning in simulation

(a) Platter skill (b) Pour skill

Fig. 8: Examples of limited GUI models.
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(a) Before - the cup grasping
keyframe is too large.

(b) After - the user has
edited that keyframe.

(c) Before - two thin
keyframes over the platter.

(d) After - the user enlarged
a keyframe over the platter.

Fig. 9: K-GUI models before and after GUI edits.

would successfully execute. This suggests that in the future
it would be beneficial to use simulated test environments like
the ones used in our evaluation during the training phase, to
encourage teachers to think about their model’s generality.

K-GUI teaching similarly resulted in participants not con-
sistently resizing the keyframes to reflect their full allowed
size. It was observed that participants either did not do any
significant editing to the kinesthetic models or fixed per-
ceived problems with them. However, in one case (participant
3) a ’fixed’ model resulted in the model working in none of
the test environments due to the constraint being too far for
the robot to reach, which skewed the results significantly.
Those who did not edit the skill usually executed the skill
in simulation in order to see what the robot learned, but
elected not to make more changes after that. However, some
participants did use the GUI to improve kinesthetic models
as designed, seen in Figure 9. These cases illustrate the
capacity to use the GUI to fix problems in kinesthetic skill
models, which the quantitative planning success metric does
not capture.

VIII. FUTURE WORK

This work is an initial step in researching methods for
novice teachers to teach robots robust constraint-based skill
models. One limitation of our approach is that each c-
keyframe must have a single orientation, which is not appro-
priate for many skills. To allow for variation in orientation
as well as position, each c-keyframe could be extended
to have more than one oriented position constraint. This
could be learned by performing an additional clustering
step for the keyframes belonging to each c-keyframe. A
more complex and powerful possibility would be to use
a set of more complicated constraints such as ”above” or

”next to” and automatically learn the appropriate set of such
constraints from kinesthetic demonstrations. Users could
then both specify and edit the learned models by using
such semantic geometric constraints, rather than the literal
geometric boxes as in our current approach. It is also possible
to explore this visualization as a means to Active Learning,
by making the model being generated from demonstrations
visible during teaching, and as a means for cloud-based LfD.
Lastly, more accurate simulation based on physics and object
manipulation can be explored for improving user experience
with the GUI.

IX. CONCLUSION

We have proposed a constraint-based skill representation
that can be learned from multiple kinesthetic keyframe
demonstrations. We also showed how skills with this rep-
resentation can be visualized and edited in an interactive
GUI. The results of a user study comparing the speed,
difficulty, user preference, and constraint robustness for dif-
ferent teaching modes were presented. The K-GUI teaching
mode was found to be the most preferred, and though
its constraint robustness is quantitatively similar to that of
kinesthetic teaching we discuss use cases in which it allows
for improving upon kinesthetic teaching.
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