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Abstract—Agents that operate in human environments will
need to be able to learn new skills from everyday people.
Learning from demonstration (LfD) is a popular paradigm for
this. Drawing from our interest in Socially Guided Machine
Learning, we explore the impact of interactivity on learning
from demonstration. We present findings from a study with
human subjects showing people who are able to interact with
the learning agent provide better demonstrations (in part) by
adapting based on learner performance which results in improved
learning performance. We also find that interactivity increases a
sense of engagement and may encourage players to participate
longer. Our exploration of interactivity sheds light on how best
to obtain demonstrations for LfD applications.

I. INTRODUCTION

Agents (e.g., robotic helpers, non-player characters in
games, etc. ) that operate in human environments will be more
flexible if they are able to learn new tasks and skills from their
end-users. We recognize that while the average person is not
familiar with machine learning techniques, they are intimately
familiar with social learning (e.g., tutelage, imitation).

Socially Guided Machine Learning (SGML) [1] explores
ways in which machine learning can be designed to more fully
take advantage of natural human interaction and tutelage. It
asks questions like “how do people want to teach agents?”
and “how do we design agents to learn effectively from natural
human interaction and instruction?”.

Inspiration for SGML comes (in part) from Situated Learn-
ing Theory, a field of study that looks at the social world of
children and how it contributes to their development. A key
concept is scaffolding, where a teacher provides support such
that a learner can achieve something they would not be able
to accomplish independently [2], [3].

The teaching and learning process of a situated learning
interaction are tightly coupled. A good instructor maintains
a mental model of the learner (e.g., what is understood,
what remains unknown) in order to provide appropriate scaf-
folding to support the learner’s needs. Some examples of
scaffolding mechanisms are: attention direction, feedback,
regulating the complexity of information, and guiding the
learner’s exploration. In general, this is a complex process
where the teacher dynamically adjusts their support based on
the learner’s demonstrated skill level. The learner, in turn,
helps the instructor by making their learning process transpar-
ent through communicative acts, and by demonstrating their
current knowledge and mastery of the task [4], [5]. Overall,
this suggests that for machine learners to be successful, we
must have a tightly coupled interaction in which the learner
and instructor cooperate to simplify the task for the other.

In this paper we address the impact that a tightly versus
loosely coupled interaction has on the learning process. We
explore this in a Learning by Demonstration (LfD) [6] context.
In LfD, a control policy or plan is learned from examples, or
demonstrations provided by a teacher. This can be approached
with a supervised learning framework [7], by derivation of
the reward function [8], or by derivation of the model [9].
Regardless of the approach, LfD is interesting to us because
it aligns well with SGML; it typically does not require expert
knowledge of domain dynamics nor of machine learning on
the part of the teacher. It has also led to successes ranging
from helicopter flying [10], to simulated robosoccer [11],
to ball seeking for the Sony Aibo [12]. Our exploration
of interactivity in SGML contributes to the field of LfD,
providing concrete data on how best to obtain demonstrations
from non-expert humans for LfD applications.

In this paper we compare two teaching paradigms: inter-
active LfD and batch LfD. In interactive LfD, the teacher
provides a series of demonstrations interspersed with interac-
tions with the learning agent, whereas in batch LfD, there are
no interactions. Unlike sophisticated approaches to interactive
LfD based on active learning principles [12]–[14], we use
a relatively simple framework. Our interactivity is one way.
Human teachers see and evaluate agent performance but the
agent has no direct communication channel to the teacher. For
example, the agent cannot ask for demonstrations. Similarly,
our LfD algorithm, a variant of off-policy Q-Learning, is
also relatively simple. This simplicity reflects our focus on
the effect of interactivity on learning. A complex interaction
framework or LfD algorithm could conflate matters.

Our experimental testbed is a game platform where players
teach a computer agent to play Pac-Man. We find that:

• Interactivity improves learning performance. Specifi-
cally, we find that (1) interactivity improves the ability
of the player to evaluate learner performance, (2) players
changed their teaching strategy based on learner perfor-
mance, and (3) adapted strategies result in faster learning.

• Interactivity improves teacher experience. Interactivity
makes players feel more engaged. Specifically, they (1)
felt like they made a difference and (2) felt like an active
participant. Interactivity may also encourage players to
participate longer.

The first empirical result is particularly interesting because
it implies that the learner is able to improve its own learning
environment merely through transparancy, without any direct
communication channel to the teacher.



Fig. 1. Screenshot of the original arcade game, Pac-Man [15]

II. PLATFORM

In order to study how interactivity affects LfD, we ran an
experiment with a Pac-Man game.

A. Domain (Pac-Man)

Pac-Man is a classic arcade game. The original version of
Pac-Man (see Figure 1) is a single-player game where a human
player controls the Pac-Man character around a maze. Pac-
Man must avoid four ghost characters, Blinky, Pinky, Inky
and Clyde, while eating dots initially distributed throughout
the maze. When all dots are eaten, Pac-Man will be taken to
the next level. If Pac-Man is caught by a ghost, he loses a
life. When all lives (usually three) have been lost, the game
ends. Near corners of the maze, there are large, flashing dots
known as power dots. Eating a power dot gives Pac-Man the
temporary ability to eat the ghosts. When a ghost is eaten, it
returns to the ghost spawn location (“ghost jail”). In the typical
version of the game, normal dots are worth 10 points, power
dots are worth 50 points, and ghosts are worth 200, 400, 800,
and 1600 points for the first, second, third and fourth ghosts.

Our platform uses a scaled down variant of Pac-Man.
This enables our learning algorithm to learn quickly enough
to be used in a real-time fashion, allowing participants to
immediately see the results of their training demonstrations
(in the interactive version). In our version of Pac-Man, the
maze is smaller: 7 x 8. There are also fewer dots: eight normal
dots and one power dot. Only one ghost, Blinky, roams the
maze. Blinky is the chaser ghost, it always chases Pac-Man
using Manhattan distance as its heuristic. In our scaled down
variant of Pac-Man, there is only a single level. The game
ends when you beat the level. Scoring is done as follows: 1000
bonus points are awarded for clearing a level (when all dots
are eaten), 10 points are awarded for eating a dot (both normal

dots and power dots), 100 points are awarded for eating the
ghost, and 1000 points are deducted if Pac-Man is caught by
the ghost. Maximum score is 1190 (1000 + 90 + 100).

B. Learning Algorithm (Q-Learning)

We frame Pac-Man as a Reinforcement Learning (RL) [16]
problem. In particular, it is modeled as a Markov Decision
Process (MDP). A MDP (S,A, P as,s′ , R

a
s , γ) is defined by

set of states S, a set of a actions A, a transition model
P as,s′ = Pr(s′|s, a) specifying the probability of reaching state
s′ by taking action a in state s, a reward model Ras = r(s, a)
specifying the immediate reward received when taking action
a in state s, and the discount factor 0 ≤ γ ≤ 1.

In our domain, state is represented by a vector containing
the position of Pac-Man, the position of the ghost, nine binary
variables denoting the existence of the nine dots, a jail counter
denoting the remaining time the ghost must remain in its jail,
and a power-mode counter representing the time remaining
in power-mode. The actions are NORTH, SOUTH, EAST, and
WEST. The reward function correspond to points. That is to
say, eating a dot results in +10 reward, eating a ghost is +100,
etc.

We used Q-Learning, for our learning agent. Q-
Learning [17], is widely used in RL [18]–[20] and has had
many positive results in playing stochastic games [21], elevator
control [22] and robotics [23]. Q-Learning produces an action-
value function or Q function, Q : S × A → R, which maps
every state-action pair to the expected utility of taking the
action in the state and following the greedy policy thereafter.
The greedy policy of a Q function is one that simply chooses
the action with the highest Q-value for any state.

Q-Learning is an off-policy learning algorithm, meaning it
can learn from example trajectories that differ from its policy.
To learn from demonstrations, we take advantage of this
ability and simply perform Q-Learning along the demonstrated
trajectory.

We implemented a variant of the Q-Learning algorithm.
For human trajectories, we used a simple replay mechanism,
BTD [24], to update the Q-values. This magnifies the effect
of human demonstrations and speeds up the learning process.
Simple replay is not performed for self-play trajectories as they
are likely less optimal and contain less accurate Q estimates.

In our implementation, Q-values are randomly initialized.
We set learning rate α to 0.8, discount factor γ to 0.99,
and ε-greedy exploration parameter ε to 0.9, which decays
with rate 0.95 per game. Note that in the interactive learning
case, ε is set to zero once interaction begins (after game
45). This ensures the agent performance players observe is
representative of the underlying learned Q-function and not
due to a random exploratory action being chosen.

C. Interface

We set up an interface for soliciting demonstrations. The
interface (see Figure 2), has several components detailed in the
list below and tagged in the figure as A-F. The first is the Pac-
Man board (A), the second contains the demonstration controls



Fig. 2. Screenshot of our interface

(B, C, D, E). The right hand side (F) contains debugging
information and can be ignored.
A: Pac-Man board
B: Pause/Unpause button and indicator
C: Shows number of human demonstrations stored
D: Shows the current play mode.

“MANUAL & Learning” means the game is in player’s
control and the agent is updating Q-values.
“AUTO & Learning” means agent is making moves while
updating Q-values.
“MANUAL & Playing” means player is playing the game
and the agent is not learning.

E: Available control keys. ‘C’ontinue is equivalent to the
unpause button. Pressing ‘R’ rewinds the state of the
game by one step. It can be repeatedly used to rewind the
game to the beginning. Other control keys (not shown)
are: ‘P’ for pausing the game, ‘S’ for starting a new game.

F: Debugging information. Ignored in the experiments.

III. EXPERIMENTAL DESIGN

We ran an user study with our platform to see how
interactivity affects both agent learning and the teaching
experience. We used a randomized, between groups study
of 20 participants solicited from the campus community.
Their backgrounds range from Bachelor to PhD students, as
reported in an exit survey. Each of the 20 participants, did the
experiment in one of two groups:
• BATCH: This group gave demonstrations directly without

feedback or interaction.
• INTERACTIVE: This group gave the second half of their

demonstrations with interaction.
Batch learning mode: Players were asked to demonstrate 30
consecutive games. They were allowed to rewind and correct
their trajectory if they wished (e.g., to correct an unintentional
mistake). They received no feedback on how the agent learned.
After the 30 demonstrations, the agent played 60 additional
games to learn on its own. Thus, the final policy is a result of
learning from these 90 trajectories.

Interactive learning mode: Players were first asked to
demonstrate 15 games. The agent was then allowed to learn
on its own for another 30 games (this process was performed
opaquely, with all animations showing agent actions turned
off). After this initial learning period, we restarted animations
and allowed players to see the agent as it learned and explored
on its own. i.e., they were able to watch the agent controlled
Pac-Man move around on the board. This continued for the
remainder of the experiment. In the remaining 45 games,
players were asked to watch agent play, and if they deemed
necessary, provide corrective demonstrations. To provide a
corrective demonstration, the player must pause the game (or
wait until Pac-Man dies) and rewind play to an appropriate
point from which to provide a demonstration of what Pac-Man
should have done. In other words, the player plays Pac-Man
to completion from the rewound point. Players were allowed
a maximum of 15 corrective demonstrations.

In the study, participants were first given instructions to
read. The instructions describe the rules and goal of the game.
It also introduces the player to their role as a teacher, to teach
the computer to play Pac-Man. Depending on which group
a participant is in, we then gave specific, group appropriate
instructions outlining the study progression. To motivate the
participants, each participant was paid $5. To help partici-
pants understand the instructions, we provided a short demo
of the important interface elements. Participants were then
allowed to play a few practice games before starting the real
experiment. When the participants were ready, we started
the experiment. At the end of the session, an exit survey
(including demographic questions) and a brief interview were
conducted. Questions were mainly about teaching strategies,
perceived performance of agent’s learning, and comments on
the teaching environment.

We logged the learned policy after each game of Pac-Man
for each participant in the study. We also maintained trajectory
logs for each participant. It recorded state transitions, actions,
rewards and value-updates.

IV. RESULTS

A. Interactivity improves learning

To evaluate the effect of interactivity on learning, we
compare logs of agent performance between interactive and
batch groups. Figure 3 shows the averaged learning curves of
the two groups. As the number of games (trajectories) available
to the agent increases, so does its performance. Note that the
composition of the games is different between the groups.
The first thirty games of the batch group are human provided
training games, the rest are games generated from self-play. By
contrast, only the first fifteen games of the interactive group
are human provided, the following thirty games are generated
from self-play, and the final games (from game 45 onwards)
are a mix of human demonstrations and agent self-play.

We can see that initially, batch and interactive performances
are comparable. At times batch outperforms interactive, some-
times the reverse occurs. The first statistically significant
difference occurs at game 63 when the interactive group
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Fig. 3. Averaged learning curve for batch and interactive. Dotted curves
show the lower and upper 95 percent confidence interval band.

outperforms the batch (df=14.1, t=1.79, p=0.048). While not
every game thereafter has a statistically significant differ-
ence, by the end the difference is clear: game 88 (df=11.0,
t=1.96, p=0.037), game 89 (df=10.8, t=2.01, p=0.035), game
90 (df=11.45, t=2.24, p=0.023). The difference is even more
evident when we consider that interactive participants only
gave a total of 24 teaching demonstrations on average as
compared with the 30 that batch participants gave. Players in
the interactive group gave fewer demonstrations on average
because they only gave corrective demonstrations (in the
second half) when the agent made serious errors and the agent
often began performing satisfactorily well before all corrective
demonstrations were used.

To explain why interactivity improves learning performance
we hypothesize the following. First, interactivity improves
the ability of the player to evaluate learner performance.
Second, players change their teaching strategy based on their
(improved) understanding or mental model of learner behavior.
Finally, the adapted strategy results in improved learning. We
explore each of these hypotheses below.

1) Interactivity improves ability to evaluate the learner: In
our exit interview, participants were asked to give an estimate
of the performance of the final trained agent. Not all partic-
ipants were willing to give an estimate, some reported that
they were unsure and had no estimate to give. This occurred
frequently in the batch group where half of the participants
could not estimate agent behavior. By contrast, all participants
in the interactive group were able to give estimates. This
difference is statistically significant: df=1, χ2 = 10, p=0.0016.

Although interactive participants are better able to estimate
learner performance, the estimates must also be accurate to be
useful. In exit interview responses, all interactive participants
estimated the final agent to perform “pretty well, though
not perfect”. This is borne out in empirical results. Actual
performance of the final agent has a 95 percent confidence
interval from a score of 836 to 1015, or alternatively, a win
rate of 88 to 96 percent. This corresponds to player estimates.

State Action distribution (N/S/E/W)
A 0% / 0% / 100% / 0%
B 50% / 0% / 50% / 0%
C 0% / 0% / 0% / 100%
all others ⊥

TABLE I
EXAMPLE PARTIAL POLICY

2) Participants changed their teaching strategy based
on learner performance: In exit interviews, 70 percent of
interactive participants said they changed their teaching
strategy during the session. To see if this is true
empirically, we compared their teaching strategy in the
first fifteen games before they have a chance to see learner
performance with the strategy used in the remaining
teaching demonstrations. A “strategy” is modeled as a
partial policy, π : S → A distribution

⋃
⊥, mapping

states to action distributions where ⊥ indicates that the
policy is not defined for the given state. We estimate
players’ teaching strategy from their demonstrations. This
is best illustrated by an example. Suppose we see the
following demonstration (trajectory) of state/action pairs:
(A, East); (B, East); (C, West); (B, North)
This would create the partial policy shown in Table I.

We compare two strategies or partial policies by com-
puting the average difference between action distributions
on those common states defined in both strategies. More
formally the difference between two strategies is computed
as d(πa, πb) = 1

Z

∑
s∈πa

T
πb
L2E(πa(s), πb(s)), where L2E

is the integrated square error [25] and Z is a normalization
constant.

When we looked at the policy difference between the first
fifteen and the later demonstrations, i.e., the shift in teaching
strategy, we saw a statistically significant difference for those
participants who said they changed policies over those who
said they did not: df=7.56, t=3.18, p=0.0065. In other words,
participants who said they changed policies actually did.

To test whether the change was based (at least in part)
on learner performance, we compared the amount of policy
change of players with the five worst initial agents, with the
amount of policy change of participants with the five best
initial agents. By “initial” we mean the agent’s performance
after the first fifteen demonstrations, before players have a
chance to interact with the learner.

A t-test shows that the players with poor initial agents
changed their teaching strategy significantly more than those
with good initial agents: df=6.70, t=5.97, p=0.00027. We per-
formed linear analysis of the data (see Figure 4) and found that
relative initial performance of the agent predicts the amount
of policy change (r-squared=0.83). Relative performance is
computed as (score−minscore)/(maxscore−minscore).

3) Adapted strategy results in faster learning: To see
whether adapted strategies resulted in faster learning, we first
examine learning rates. We compare the learning rate of
interactive participants that significantly adapted their strategy,
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Fig. 4. Amount of policy change as a function of relative initial performance.
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Fig. 5. Averaged learning curve of interactive participants that significantly
changed their teaching strategy and those that did not.

with interactive participants that did not. Figure 5 compares
the two learning curves.

For interactive participants that significantly adapted their
strategy, the most rapid improvement (highest learning rate)
occurred around game 60 (mean=59.7, stderr=2.9) meaning
it occurred with 95% confidence somewhere in the range
of game [54.0, 65.4]. This range exactly corresponds with
when the additional, adapted strategies began to make up a
significant portion of the teaching demonstrations. The range
corresponds to [5.8, 9.2] adapted games which proportionally
is [27.9%, 38.0%] of training demonstrations. We can see the
resulting rapid improvement in agent performance at this range
in Figure 5. Clearly, adapted strategies accelerated the learning
rate.

By contrast, for interactive participants that did not signif-
icantly adapt their policy, the most rapid improvement came
around game 21 (mu=20.6, stderr=7.4) meaning it occurred
with 95% confidence somewhere in games [6.1, 35.1]. This

range is somewhere during the initial 15 examples and first
half of the subsequent self-learning. This aligns with typical
learning curves in RL literature where learning occurs at
its fastest rate relatively early on, before slowing down and
gradually leveling off.

This difference in the location of most rapid learning,
between those who did and did not change strategies, is
statistically significant: df=5.19, t=4.91, p=0.002.

A second way we can tell that adapted strategies resulted
in faster learning is by examining when the performance
difference between interactive and batch groups first becomes
statistically significant (see Fig. 3). This occurred at game 63
(df=14.1, t=1.79, p=0.048), which again corresponds to when
participants’ adapted strategies start making up a significant
portion of the teaching demonstrations.

B. Interactivity creates a better teaching experience

Interactivity creates a better teaching experience for human
players. In particular, it makes players feel more engaged and
may encourage them to participate longer (which is inherently
beneficial to the machine learner).

1) Longer participation: We asked participants how much
longer they would perform the teaching task before they grew
bored or tired of it. 70 percent of batch participants reported
they tired of the task within the study length, while 30 percent
reported interest in continuing longer. Interactive participants,
on the other hand, reported qualitatively different results. Many
gave length estimates dependent on learner performance.

When batch participants describe how long they would
perform the teaching task, all measured length by units of
time (e.g., minutes) or by number of games. In other words,
when asked how long they would perform the task before tiring
of it, they reported things like “a little more, maybe 5 to 10
minutes” or “20 more games”.

By contrast, half of the interactive participants (5 of 10) re-
ported variable lengths. Specifically, four reported they would
remain interested until the agent performed satisfactorily, and
the fifth reported interest until the agent stopped improving.
Of the remaining half, three reported a length less than or
equal to the study length, and the remaining two reported a
length greater than the study length.

If we assume that it takes more than 30 games (the study
length) to obtain good performance and that the learner can
show steady improvement, then 70 percent of the participants
would perform the task longer than the study length. In our hy-
pothetical scenario, this would lead to interactive participants
being interested in spending statistically significantly more
time on the task (df=1, χ2 = 7.62, p=0.0058). Unfortunately,
our task was not sufficiently challenging. It does however,
lead us to speculate that given a sufficiently challenging
problem, and a learner that shows steady improvement, future
experiments would be able to demonstrate interactivity to
encourage longer participation.

2) More engagement: Participants in the interactive group
felt more engaged than those in the batch group. We can
already see this from previous results on participation length.



In the interactive group, half of the participants described the
length of time they would be willing to spend in terms of agent
performance, meaning they took stock of the agent and its
performance. By contrast, none of the batch participants did.
This statistically significant difference (df=1, Chi-squared=10,
p-value (two-tailed): 0.0016) suggests a higher level of en-
gagement.

Responses to two other exit interview questions lead us to
conclude the interactive group were more engaged. We asked
participants whether they “felt like [they] made a difference”
and whether they “felt like an active participant”. In the
interactive group all participants responded positively to both
questions. By contrast, in the batch group, 50 percent and
60 percent of participants, respectively, answered positively to
the questions. This difference is statistically significant for the
difference question (df=1, χ2 = 10, p=0.0016) and also for
the active participant question (df=1, χ2 = 6.7, p=0.0098).

V. CONCLUSION

We explored the the impact of interactivity on learning
performance and teaching experience in a LfD context. In our
study where human subjects are asked to teach a computer
to play Pac-Man, we found that interactivity improves both
learning performance and player experience. In particular, we
find interactivity improves the ability of the player to evalu-
ate learner performance, that players changed their teaching
strategies based on learner performance, and that resulting
adapted strategies resulted in faster learning. With respect to
player experience, we find that interactivity makes players feel
more like they “made a difference” and more like an active
participant. This result is interesting because it implies that
the learner is able to improve its own learning environment
through transparancy.

Our results show the benefit of tightly coupled interaction
to socially guided learning and the importance of SGML
considerations when deploying such a system. The results also
provide concrete data to help guide practitioners on how best
to obtain demonstrations from non-expert humans for LfD
applications. It highlights the importance of accurate learner
assessments and understanding of the learner to human teach-
ers. We also learn that seeing learner improvement increases
teacher engagement and that teacher engagement and interest
wanes as learner performance becomes more satisfactory. This
suggests that LfD is more suited for obtaining satisfising
performance as opposed to refining towards an optimal policy.
It also suggests that learning algorithms that can show steady,
consistent improvements are more suitable for use with LfD
when demonstrations are obtained from non-expert humans.

The first empirical result is particularly interesting because
it implies that the learner is able to improve its own learning
environment merely through transparancy, without any direct
communication channel to the teacher.
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